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Problem Essence
Probabilistic Modeling: use a probabilistic model Q to estimate an
unknown distribution P. This can be quantified by a distance measure
D, such that:

D(P,Q) → 0,Q → P

Motivations

Cases where KL (Kullback-Leibler) or JS (Jensen-Shannon) divergence
may be problematic:

No explicit density function of probability model
Support mismatch
In high-dimensional space, KL and JS are sensitive to perturbations.

What else?

Benefit of employing OT distance:
Applicable to both implicit and explicit models
Regardless of match or mismatch of supports
Bound up for distribution perturbation

Advantages of entropy regulation:
Smoothed solution
Avoid Lipschitz constraint to enforce (Kantorovich-Rubinstein duality
solution, e.g. WGAN).

Preliminary

Work space, (X , ∥ · ∥2),X ⊂ Rd

Distribution P with finite support X1 ⊂ X
Distribution Q with finite support X2 ⊂ X

Modeling

argmin
g:Z→X

W(P,Q) = argmin
θ

W(P,Q)

with
W(P,Q) = min

π∈Π(P,Q)
⟨π, M⟩ − λH(π),

Cost matrix [M]i,j = d(x(i), y(j)) = ∥x(i) − y(j)∥22
Optimization domain Π(P,Q) =

{
π : π1 = P, πT1 = Q

}
H(π) =

∑
i,j −πi,j log(πi,j)

How does it work?
Problem intuition: model learning by sample comparison.
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Signal Flow for EOT Generative Model (EOTGM)

Alternative Ways to Use EOTGM

Explicity model?
Yes No

Gradient chain rule
Direct optimization
w.r.t. model parameters

Formulate loss by π∗
λ

Error back-propagation
by auto gradient tools

P · QT, λ → ∞
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Learning in feature space

Euclidean distance is not good for multimedia signal comparison
Do the model learning in feature space M
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Pushforward mapping, f : X → M, and formulate cost matrix in M.

Simulation Setup

Optimization of g and f: EOTGAN
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Numerical Results
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Comparison of IS and FID (on MNIST) versus mixing ratio r.
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