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Motivation



Why doing this?

• State-of-the-art speech recognition services are running on cloud

• However, this will leak the client’s private information to the server.

e.g., medical/financial/enterprise/sensitive data
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How to protect privacy? — A private-cloud solution

• Step 1: build a compliance boundary → prevent data to leak out
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How to protect privacy? — A private-cloud solution

• Step 2: move ASR service inside of compliance boundary
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How to protect privacy? — A private-cloud solution

• issues 1: hard to deploy an update to the private cloud

• issues 2: costly for some small business/individual users

• issues 3: service provider may divulge the model and decoder to the

service consumer who may resale to others
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Encrypted Speech Recognition



What if we can encrypt the data

• Ideally, we want ...
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What if we can encrypt the data

• Does this encryption exist?
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Homomorphic Encryption

E−1
[
f
(
E[x]

)]
≡ f(x)→ An elegant solution for all above questions
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Homomorphic Encryption — example

(
2

126

)

252

x

f(x)

Decryption withprivate.key(47,143)

=
(
7
3

)
f( ) = x × x

=21

f( )= x×x

Encryption with pub.key(23,143)

3 mod143 = 126

7 mod143 = 2

47
252 mod143 = 21

10



Homomorphic Encryption — example

(
2

126

)

252

x

f(x)

Decryption withprivate.key(47,143)

=
(
7
3

)
f( ) = x × x

=21

f( )= x×x

Encryption withpub.key(23,143)

3 mod143= 126
23

7 mod143= 2
23

47
252 mod143 = 21

11



Homomorphic Encryption — example

(
2

126

)

252

x

f(x)

Decryption withprivate.key(47,143)

=
(
7
3

)
f( ) = x × x

=21

f( )= x×x

Encryption withpub.key(23,143)

3 mod143= 126
23

7 mod143= 2
23

47
252 mod143 = 21

12



Homomorphic Encryption — example

(
2

126

)

252

x

f(x)

Decryption withprivate.key(47,143)

=
(
7
3

)
f( ) = x × x

=21

f( )=x×x

Encryption withpub.key(23,143)

3 mod143= 126
23

7 mod143 = 2
23

47
252 mod143= 21

13



Homomorphic Encryption — example
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Proposed Framework
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• Only AM scores are computed on server side.

• Original result guaranteed after decryption.

• No need to retrain the DNN on encrypted data.
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What about Latency?

It is extremely slow and not feasible before, until ...

Microsoft researchers smash homomorphic encryption speed barrier!

• But f (·) must be polynomial

• must be fixed point operation

• open source → http://sealcrypto.org/
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Deep Polynomial Network



Deep polynomial network

Replace ReLU and Sigmoid as polynomials

• unbounded polynomial approximation → batch norm is a must.
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Deep polynomial network

Dense layer (polynomial)

Convolution layer (polynomial)

Batch norm (merged to dense layer)

Max pooling layer(approximate)
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Low-bit quantization

low-bit model is critical for encryption speed

weights activations
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Experimental Results



WER on Switchboard

WER in % 16-bit 8-bit 4-bit 2-bit

DNN
quantized train 14.7% 14.7% 14.9% 30.3%

→ polynomial 15.8% 15.8% 16.1% 30.8%

CNN
quantized train 12.2% 12.3% 12.7% –

→ polynomial 13.5% 13.6% 14.0% –

• with proper quantized training, 4-bit is sufficient.

• the polynomial networks increase WERs by a little as a cost.
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WER and Latency on Cortana Task

avg. latency per utterance

16-bit 4-bit encryption decryption overall

DNN 12.9% 13.4% – – 177ms

polynomial 14.8% 15.5% 202ms 16ms 373ms
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Summary

• a framework that enables privacy-preserving speech recognition

• a polynomial network that can make predictions over the encrypted

speech in real time.

• with quantized training, 4-bit is sufficient for DNN/CNN.
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Thanks.

Questions?
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Future work

• make the decoder also work on encrypted domain, so that we could

run everything on the cloud.

• investigate training on encrypted data so that multiple parties

(e.g.Microsoft, Google and Amazon) can encrypt and combine their

data together to train models without sacrificing users privacy.
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