Computational cognitive assessment: investigating
the use of an Intelligent Virtual Agent for the
detection of early signs of dementia
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average number of empty words.
» Acoustic-only: 12 features (Pat) + 12 for APs,
e.g. silence, intonation, pitch, H1-H2.
 Lexical-only (Part of Speech): 12 features (Pat)
+ 12 for APs, e.g. number of verbs, nouns adverbs.
« Word Vector: 7 features after Principal
Component Analysis (PCA).

« Verbal fluency test: (naming animals (semantic
fluency test)/words begin with the letter ‘P’
(phonemic fluency test) in one minute) 6 features,
number of unique animals/P-words correctly uttered,
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Figure 3: ROC-AUC (the most significant features).

« feasibility of eliciting conversations with people

average and standard deviation of Age of Acquisition

with memory problems, i.e. the VA acts as a

neurologist or a Digital Doctor. (AcA). Conclusions and further work
« applicability of using an IVA in the diagnostic

pathway by augmenting the initial Results _

conversation-based assessment to include more Conclusions

» we explored the feasibility and applicability of using

standard test procedures, such as administering JRTI "
A. Diarisation and speech recogpnition the IVA to administer standard dementia screening

verbal fluency tests.

: . . . . The HALLAM and SEIZURE data sets were used for training tests.
» expanding our diagnostic categories to include e i based diaricati dul > the Probabilis. _
healthy elderly controls, Mild Cognitive Impairment t. © |.vector e arisation modL’e (using the Pro s * we extracted a variety of features.
(MCI), as well as Functional Memory Disorder tic Linear Discriminant Analysis (PII_DA) and the Bidirec- . adding the ﬂ.uency test improves accuracy for the
(FMD), and Neurodegenerative Dementia (ND) to tional Long Short Term Memory/Time-Delay Neural Net- A-way classification achieving 62%.

work (BLSTM)-TDNN based ASR. « applying the feature selection the ND/HC was the

= totally unseen data easiest binary classification (94%), while the
» for the 18 recordings of the IVvA with manual ND/MCI was the hardest (68%).

transcripts, the Diarisation Error Rate (DER): 11%,
and the Word Error Rate (WER): 59%.

reflect the variety of conditions seen in practice.

Future work

Dementia detection system . Expanding to include more types of feature

B. Classification accuracy k=10 fold cross validation « Improving the ASR, diarisation and feature
Methodology: comparing conversation-only to fluency extraction modules.
test-only and then to the combination of conversation and - Improving the IVA to make it more responsive.

fluency test.
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