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Abstract
The recent deep learning methods can offer state-of-the-art performance

for Monaural Singing Voice Separation (MSVS). In these deep methods, the
recurrent neural network (RNN) is widely employed. This work proposes a
novel type of Deep RNN (DRNN), namely Proximal DRNN (P-DRNN) for
MSVS, which improves the conventional Stacked RNN (S-RNN) by introduc-
ing a novel interlayer structure. The interlayer structure is derived from an
optimization problem for Monaural Source Separation (MSS). Accordingly,
this enables a new hierarchical processing in the proposed P-DRNN with the
explicit state transfers between different layers and the skip connections from
the inputs, which are efficient for source separation. Finally, the proposed ap-
proach is evaluated on the MIR-1K dataset to verify its effectiveness. The
numerical results show that the P-DRNN performs better than the conventional
S-RNN and several recent MSVS methods.

Introduction
Monaural Singing Voice Separation (MSVS), as an important examplar
of Monaural Source Separation (MSS), aims to separate the singing
voice (vocal) from the background music components in a single chan-
nel mixture signal. Compared to traditional shallow methods, deep
learning methods such as Deep Neural Network (DNN) have recently
emerged as powerful alternatives and provided state-of-the-art perfor-
mance for MSVS with the help of large datasets. There are three ba-
sic structures to construct DNN for MSVS: (i) Feed-Forward Network
(FFN); (ii) Convolutional Neural Network (CNN); (iii) Recurrent Neu-
ral Network (RNN). The advantage of employing deep methods is built
on a hypothesis that “a deep, hierarchical model can be exponentially
more efficient at representing some functions than a shallow one’. This
research concentrates on constructing a more effective deep architec-
ture of RNNs for MSVS.

RNN can learn the temporal dynamics in audio signals, thanks to
the recurrent (feedback) connections between the hidden units. How-
ever, the recurrent connections in RNN offer deep structures only in
time, and lack hierarchical processing of the input at different scales.
To address this problem, Deep Recurrent Neural Network (DRNN) is
proposed, such as the Stacked RNN (S-RNN), which stacks multiple
recurrent hidden layers on top of each other. However, the connection
(‘stacking’) between layers of S-RNN is shallow, without intermediate,
nonlinear hidden layers (interlayers) between different layers.

Main Objectives
We introduce an improved S-RNN, namely Proximal-DRNN (P-
DRNN) for MSVS, which has a novel interlayer (Proximal Layer) to:

1. convey information between different layers via interlayers;

2. explicit state transfers between different layers;

3. have ‘skip’ connections from the inputs to each layer;

4. be customized for MSS and deepen RNNs effectively for MSVS.

Materials and Methods
The proposed interlayer architecture is derived from a proximal algo-
rithm designed to solve a general MSS optimization problem:

minimize
xt,j

φ1(xt,1) + φ2(xt,2) + ... + φJ(xt,J)

subject to

J∑
j=1

xt,j = mt,
(1)

where the variable xt,j corresponds to the j-th estimated source from
the mixture mt, The goal of Eq. (1) is to decompose each frequency
feature vector mt into xt,j. The proposed method is derived from this
optimization problem.
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Figure 1: The proposed P-DRNN made of alternating layers of Bidirectional RNN
(BiRNN) Layer and Proximal (Prox) Layer.

Mathematical Section
In the following, we omit the index t in all the variables for simplicity.
First, we rewrite Eq. (1) as an unconstrained minimization problem.
We denote

X = [x1, ...,xJ ] ∈ RN×J , (2)

f (X) =

J∑
j=1

φj(xj), (3)

g(X) = IC(X), (4)

where IC is the indicator function of set C,

C =

X ∈ RM×J
∣∣∣∣ J∑
j=1

xj = mt

 . (5)

Thus Eq. (1) becomes

minimize
X

f (X) + g(X). (6)

If f and g are closed convex functions with nonempty domains, and
the solution of this minimization problem is not empty, the problem in
Eq. (6) can be solved by the primal-dual proximal method. Given an
auxiliary variable,

U = [U1, ..., UJ ] ∈ RN×J , (7)

the primal-dual method gives the following iteration,

Xk−1/2← Proxτf (Xk−1 − τUk−1), (8)

Uk−1/2← Proxσg∗(Uk−1 + σ(2Xk−1/2 −Xk−1)), (9)

Xk ← Xk−1 + ρk(Xk−1/2 −Xk−1), (10)

Uk ← Uk−1 + ρk(Uk−1/2 −Uk−1), (11)

where k represents the k-th iteration step, g∗ is the conjugate of g, and
Proxτf and Proxσg∗ are the proximal operators of f and g∗. The pa-
rameters ρk, τ , and σ are positive. Since Eq. (3) suggests that f is
separable, according to Proposition 24.11 in [1], Proxτf in Eq. (8) can
be broken into N smaller operations that can be carried out indepen-
dently in parallel,

Proxτf (Y) =
(

Proxτφj(yj)
)

1≤j≤J
,∀Y = [yj] ∈ RN×J . (12)

The Proxσg∗ can be evaluated analytically. In fact, the proximal opera-
tor of an indicator function is a projection operator [1],

Proxσg(Y) = ProjC(Y) (13)
=
(
yj − Ȳ + (1/J)mt

)
1≤j≤J , (14)

where Ȳ = 1/J
∑J
j=1 yj. Suppose S is a temporary variable,

S = Uk−1 + σ(2Xk−1/2 −Xk−1), (15)

according to the following Moreau identity [1]

tProxt−1g∗(Y/t) = Y − Proxtg(Y), t > 0, (16)

Eq. (9) can be simplified as follows,

Uk−1/2← Proxσg∗(S) (using Eq. (15))
= S− σProxσ−1g(σ

−1S) (using Eq. (16))
= S− σProjC(σ−1S) (using Eq. (13))
=
(
S̄− (1/J)σmt

)
1≤j≤J (using Eq. (14))

which implies that all elements of Uk−1/2 are equal. From the defini-
tion of S in Eq. (15), we have, for every 1 ≤ j ≤ J ,

U
k−1/2
j ← Ūk−1 + σ(2X̄k−1/2 − X̄k−1)− (1/J)σmt. (17)

Furthermore, considering both Eqs. (11) and (17), we can conclude
that at any iteration step k (or k− 1/2), all the elements of Uk (or
Uk−1/2) are equal,

Ukj = uk, U
k−1/2
j = uk−1/2, (1 ≤ j ≤ J). (18)

where the elements of Uk (or Uk−1/2) are assumed to be uk (or
uk−1/2). Based on Eq. (18), Eq. (17) can be simplified as

uk−1/2← uk−1 + σ(2X̄k−1/2 − X̄k−1)− (1/J)σmt. (19)

Based on Eqs. (12) and (19), the iteration of Eqs. (8)-(11) becomes
(the index t is omitted for simplicity.)

x
k−1/2
j ← Proxτφj(x

k−1
j −τuk−1), (1 ≤ j ≤ J)

xkj ← xk−1
j +ρk(x

k−1/2
j −xk−1

j ), (1 ≤ j ≤ J)

uk← uk−1+ρk

(
σ(2X̄k−1/2−X̄k−1)−(1/N)σmt

)
.

Results
Figure 2 presents the vocal separating performance of both P-DRNN
and S-RNN for various depths L with respect to T = 10. When the
number of layers is increased to more than 3, the S-RNN experienced
a rapid performance decrease. For P-DRNN, we can see that its per-
formances of GNSDR and GSAR improve stably with deeper layers.
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Figure 2: The separation performances of S-RNN and P-DRNN: T = 10

We compared our results with other previous works. Table 1 shows
the results with unsupervised and supervised settings. For the loss L2,
our model of T = 10 obtained 0.47 dB GNSDR gain, 0.61 dB GSIR
gain, and 0.33 dB GSAR gain, compared to the best results (‘DRNN-
2’).

Unsupervised
Model GNSDR (dB) GSIR (dB) GSAR(dB)
RPCA 3.15 4.43 11.09

RPCAh 3.25 4.52 11.10
RPCAh + FASST 3.84 6.22 9.19

Supervised
Model GNSDR (dB) GSIR (dB) GSAR (dB)
MLRR 3.85 5.63 10.70
RNMF 4.97 7.66 10.03

DRNN-2 (L2) 7.27 11.98 9.99
P-DRNN (L2, T = 4) 7.36 12.31 9.91
P-DRNN (L2, T = 10) 7.74 12.59 10.32

Table 1: Comparisons of the separation results (in dB) between the proposed method
(12-layer) and previous approaches.

Conclusions
We have introduced a new method to deepen RNNs, i.e., Proximal
DRNN, to improve separation performance in MSVS. Our design was
derived from the primal-dual method, which offered a proximal in-
terlayer structure that induced more effective information transfer be-
tween different layers. In numerical tests, the P-DRNN outperformed
many previous approaches on the MSVS problem.
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