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Introduction Main Results
Motivation A Fundamental Result in RMT
under Assumptions 1 and 2, it allows to construct a deterministic equivalent of
» The c_zlgsign qf LDA heavily relies.on the data covariance matrix which becomes ill (%C1/2ZTZC1/2 n |p)1 denoted by Q (1) € RP* in the sense that
conditioned in the large data regime. 1
. N . . . . . 1 _
» Most analysis fopus on regulanzatlop techmqugs to overcome the high dimensionality a (LcirzTzel2 4 L, b—a'Q(i)b s orob O,
effect on the estimation of the covariance matrix. tp
» Dimensionality reduction is an effective technigue to get around high dimensionality for all deterministic @ and b in RP with uniformly bounded Euclidean norms and
but most analysis relies on bounds on the performance which might be loose in | o o d !
certain cases. t > 0. Q(t) is a deterministic matrix given by Q(t) = (Ip + 1+£’5(t)C) . where

» Random projection is a common way to perform dimensionality reduction with some o(t) satisfies o(t) = (ljtrCQ ().
guarantees on the pairwise distances between data points (the

Johnsonn-Lindenstrauss Lemma) but little can be told regarding the classification Proposition 1. (Asymptotic Performance)

performance. Under Assumptions 1 and 2, then for i/ € {0,1} the conditional probability of
misclassification in (4) converges in probability to a non trivial deterministic limit
Contributions given by
» We consider LDA when data is randomly projected and arise from the multivariate P-LDA _ ¢ —%HT (C+ 50/';9)_1 p+ (-1 )'+1 log Z—? 0 (5)
distribution. € — \/ TR —>prob. U,
» We investigate the classification performance for general random projection matrices i o (C+odlp) pe |
satisfying some finite moments assumptions. where 4 IS such that
» We carry out the analysis when both the data dimension p and the reduced dimension ogtr (C + (5d|p)—1 —p—d. (6)
d grow large simultaneously at the same rate, i.e. d/p — c € (0,1). _
» Under some mild assumptions controlling the data statistics, we show that the Special cases
classification risk converges to a universal limit that describes in closed form fashion > Equal priors, i.e. mo = 1.
the performance in terms of the statistics and the dimensions involved. 1
» The obtained results permits to analytically quantify the performance loss due to e A — o {—E\/ 1T (C + oglp) u} — prob. 0.
projection which allows to carefully choose the reduced dimension in order to achieve
a certain desirable performance. » Equal priors and C = I,
P-LDA 1 =
LDA with Random Projections 0 {_5 I/pm H} ~prob. 0.
| DA As expected, there is a performance loss due to projection and it is analytically

characterized by Proposition 1. Conversely, for a given desired performance ¢, we

. . can determine the minimum d such that 7 1PA < &,
» For a data point x € RP, we say that x € C; iff x ~ N (u;, C). ‘ = €

» When the data is Gaussian, LDA is a Bayes classifier in the sense it maximizes P [C;| x|
for i € {0,1}. The LDA score is
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(. Mot p A o > . . . L .
Wioa (X) = (X 2 > C (ko= p) +log - 5 0. (1) We consider Gaussian and Bernoull projection matrices generated
> Th ditional probability of misclassification is given b | as follows.
e conditional probability of misclassification is given by S
oA = P [(~1) Wipn < Olx € C;]. > Gaussian: Wi N'-'-d1N (0.1/p).
> Relying on the Gaussian assumption, we have > Bernoulli: W = {ﬁ (1 - 2Bi,j)} where B;; ~iiqd Bernoulli(1/2).
oa . |3 C 4 (=1)" log 2 Synthetic data
e =@ N (2)]  The data is generated using the Gaussian distribution with the
L ) ] following parameters.
Random Projections » p — 800
Random projection consists in the following operation. > o = 0pand pq = %1[3 .
| X — Wx. MNIST data
Johnscl)nn-Llndenstr.auss Lemma. S loa | | » Cp Is taken to be the digit 2 whereas Cq Is given by digit 3.
mora given n data points Xy, - -, Xp In RP, e € (0.1) and d > =27, there exists a linear » We obtain the data statistics by relying on sample estimates
map f: RP — RY such that .
P > > 5 computed from the training data.
(T =€) [|xi — X[ < [If (x;) — £(x)[|” < (1 +€) [ % — X[|", (3) e Coae
forall 7,/ € [n] | L\ Gaussian projection matrix | \ Bernoulli projection matrix
v 04 104t
What about the classification risk = %
Conditioning on the projection matrix W, we have 5035}
P-LDA R 1 (—1)""log — _ E 0.3
€ = | — E\/MTWT (WCW ') Wp + = ; (4) 2
) \/H’ we (WCWT) W[,l, - Tcé 025 = = = Full dimension
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(Gaussian projection matrix
Assumption 1. (Growth rate)
As p, d — oo we assume the following
> Data scaling: 0 < liminf§ <limsup g < 1,
> Mean scaling: Let p = po — py, limsup,, ||| < oo.
> Covariance scaling: limsup, ||C|| < oo.

Misclassification rate

Assumption 2. (Projection matrix)

We shall assume that the projection matrix W writes as W = %Z, where the entries Z;

(1 <i1<d,1</j<p)ofZare centered with unit variance and independent identically

distributed random variables satisfying the following moment assumption.
There exists € > 0, such that E \Z,-,,-]‘”e < 00. Figure: Misclassification rate of randomly-projected LDA.
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