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Introduction

Motivation

I The design of LDA heavily relies on the data covariance matrix which becomes ill
conditioned in the large data regime.

I Most analysis focus on regularization techniques to overcome the high dimensionality
effect on the estimation of the covariance matrix.

I Dimensionality reduction is an effective technique to get around high dimensionality
but most analysis relies on bounds on the performance which might be loose in
certain cases.

I Random projection is a common way to perform dimensionality reduction with some
guarantees on the pairwise distances between data points (the
Johnsonn-Lindenstrauss Lemma) but little can be told regarding the classification
performance.

Contributions

I We consider LDA when data is randomly projected and arise from the multivariate
distribution.

I We investigate the classification performance for general random projection matrices
satisfying some finite moments assumptions.

I We carry out the analysis when both the data dimension p and the reduced dimension
d grow large simultaneously at the same rate, i.e. d/p → c ∈ (0,1).

I Under some mild assumptions controlling the data statistics, we show that the
classification risk converges to a universal limit that describes in closed form fashion
the performance in terms of the statistics and the dimensions involved.

I The obtained results permits to analytically quantify the performance loss due to
projection which allows to carefully choose the reduced dimension in order to achieve
a certain desirable performance.

LDA with Random Projections

LDA

I For a data point x ∈ Rp, we say that x ∈ Ci iff x ∼ N (µi,C).
I When the data is Gaussian, LDA is a Bayes classifier in the sense it maximizes P [Ci|x ]

for i ∈ {0,1}. The LDA score is

WLDA (x) =

(
x − µ0 + µ1

2

)>
C−1 (µ0 − µ1) + log

π0

π1 C1
<
>
C0

0. (1)

I The conditional probability of misclassification is given by
εLDA

i = P
[

(−1)i WLDA < 0|x ∈ Ci

]
.

I Relying on the Gaussian assumption, we have

εLDA
i = Φ

[
−1

2µ
>C−1µ + (−1)i+1 log π0

π1√
µ>C−1µ

]
. (2)

Random Projections

Random projection consists in the following operation.

Rp → Rd

x 7−→Wx .

Johnsonn-Lindenstrauss Lemma
For a given n data points x1, · · · ,xn in Rp, ε ∈ (0,1) and d > 8 log n

ε2
, there exists a linear

map f : Rp → Rd such that

(1− ε) ‖xi − xj‖2 ≤ ‖f (xi)− f (xj)‖2 ≤ (1 + ε) ‖xi − xj‖2 , (3)
for all i , j ∈ [n]

What about the classification risk ?
Conditioning on the projection matrix W, we have

εP-LDA
i = Φ

[
− 1

2

√
µ>W> (WCW>)

−1 Wµ +
(−1)i+1 log π0

π1√
µ>W> (WCW>)

−1 Wµ

]
. (4)

Technical Assumptions

Assumption 1. (Growth rate)
As p,d →∞ we assume the following

I Data scaling: 0 < lim inf d
p ≤ lim sup d

p ≤ 1,
I Mean scaling: Let µ = µ0 − µ1, lim supp ‖µ‖ <∞.
I Covariance scaling: lim supp ‖C‖ <∞.

Assumption 2. (Projection matrix)
We shall assume that the projection matrix W writes as W = 1√

pZ, where the entries Zi ,j

(1 ≤ i ≤ d , 1 ≤ j ≤ p) of Z are centered with unit variance and independent identically
distributed random variables satisfying the following moment assumption.
There exists ε > 0, such that E |Zi ,j|4+ε <∞.

Main Results

A Fundamental Result in RMT
under Assumptions 1 and 2, it allows to construct a deterministic equivalent of(

1
tpC1/2Z>ZC1/2 + Ip

)−1
denoted by Q (t) ∈ Rp×p in the sense that

a>
(

1
tp

C1/2Z>ZC1/2 + Ip
)−1

b − a>Q (t) b →prob. 0,

for all deterministic a and b in Rp with uniformly bounded Euclidean norms and

t > 0. Q (t) is a deterministic matrix given by Q (t) =

(
Ip +

d
tp

1+ d
tpδ(t)

C
)−1

, where

δ(t) satisfies δ(t) = 1
d tr CQ (t) .

Proposition 1. (Asymptotic Performance)
Under Assumptions 1 and 2, then for i ∈ {0,1} the conditional probability of
misclassification in (4) converges in probability to a non trivial deterministic limit
given by

εP-LDA
i − Φ

−1
2µ
> (C + δd Ip)−1 µ + (−1)i+1 log π0

π1√
µ> (C + δd Ip)−1 µ

→prob. 0, (5)

where δd is such that

δd tr (C + δd Ip)−1 = p − d . (6)

Special cases
I Equal priors, i.e. π0 = π1.

εP-LDA − Φ

[
−1

2

√
µ> (C + δd Ip)−1 µ

]
→prob. 0.

I Equal priors and C = Ip.

εP-LDA − Φ

[
−1

2

√
d/p ‖µ‖

]
→prob. 0.

As expected, there is a performance loss due to projection and it is analytically
characterized by Proposition 1. Conversely, for a given desired performance ε, we
can determine the minimum d such that εP-LDA ≤ ε.

Experiments

We consider Gaussian and Bernoulli projection matrices generated
as follows.
I Gaussian: Wi ,j ∼i.i.d N (0,1/p).
I Bernoulli: Wi ,j =

{
1√
p (1− 2Bi ,j)

}
where Bi ,j ∼i.i.d Bernoulli (1/2).

Synthetic data
The data is generated using the Gaussian distribution with the
following parameters.
I p = 800.
I µ0 = 0p and µ1 = 3√

p1p .
I C = {0.4|i−j |}i ,j.

MNIST data
I C0 is taken to be the digit 2 whereas C1 is given by digit 3.
I We obtain the data statistics by relying on sample estimates

computed from the training data.
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Figure: Misclassification rate of randomly-projected LDA.
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