

Introduction

- Speaker verification(SV): To verify whether a given test speech recording is from an enrolled speaker or not.
- **Whisper speech**: Used in private conversations, pathological conditions.

Need for whisper SV: Speakers often whisper the password in a biometric system, criminals might whisper in phone to avoid leaving the voice print[1]. Challenges: Absence of pitch, Low-frequency formant shift, hyper-articulation

Whispered speaker verification system

- ▲ 3 major steps:[2]
- 1) **Training**: GMM based background model and T-matrix training using available neutral and whisper training data.
- 2) Enrollment: Involves extracting i-vectors using available neutral and whisper data of enrolled speakers.
- 3) **Testing**: Taking decision using cosine distance between test speech i-vector and enrolled speaker i-vector.

FORMANT-GAPS FEATURES FOR SPEAKER VERIFICATION USING WHISPERED SPEECH

Abinay Reddy Naini, Achuth Rao M V and Prasanta Kumar Ghosh

Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India-560 012

Proposed Formant-Gaps features

For each frame, we computed five formants using [3], indicated by a vector of $\mathcal{F} = [f_1, f_2, f_3, f_4, f_5]$, where f_i indicates the *i*-th formant. Let us consider first (f_i^1) and second order (f_i^2) formant gaps (FoGs) as

$$f_i^1 = f_{i+1} - f_i, \ 1 \le i \le 4, \qquad \qquad f_i^2 = f_{i+1}^1 - f_i^1, \ 1 \le i \le 3$$
 (1)

Let
$$\mathcal{F}^1 = \{f_i^1; 1 \le i \le 4\}, \ \mathcal{F}^2 = \{f_i^2; 1 \le i \le 3\}.$$

 \blacktriangle We experimented two features using FoGs, namely,

 $FoG_1 = [\mathcal{F}, \mathcal{F}^1]$ and $FoG_2 = [\mathcal{F}, \mathcal{F}^1, \mathcal{F}^2].$ • where the dimension of features FoG_1 , FoG_2 are 9,12 respectively.

Illustrative experiment:

In order to understand the distribution of the proposed features, we trained a speaker specific GMM for whispered and neutral speech features separately. $\downarrow D(N_i|W_i)$: The KL divergence between *i*-th speaker's neutral GMM (N_i) and whispered GMM (W_i) .

 \blacktriangle $M_{KL}(i)$: The average of KL divergence between the N_i and $W_{i\neq i}$ speakers.

 $M_{KL}(i) = \frac{1}{N-1} \sum_{j} D(N_i | W_{j \neq i})$ $\sigma_{KL}(i) = \sqrt{\frac{1}{N-1}}\sum_{i=1}^{N-1}$ where $\mathcal{P} = \{i : D(N_i | W_i) < M_{KL}(i) - 1.5 \times \sigma_{KL}(i)\}.$

References

- ▲ [1] X Fan and J HL Hansen, Speaker identification within whispered speech audio streams, IEEE transactions on audio, speech, and language processing, vol.19, no.5, pp.14081421, 2011.
- [2] N Dehak, P J Kenny, R Dehak, P Dumouchel, and P Ouel-let, Front-end factor analysis for speaker verification IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788798, 2011.
- [3] B Bozkurt, T Dutoit, B Doval, and C dAlessandro, Improved differential phase spectrum processing for formant tracking, in Eighth International Conference on Spoken Language Processing, 2004.
- ▲ [4] M Sarria-Paja and T H Falk, Fusion of auditory inspired amplitude modulation spectrum and cepstral features for whispered and normal speech speaker verification, Computer Speech & Language, vol.45, pp.437456, 2017.

$$L_j(D(N_i|W_{j\neq i}) - M_{KL}(i))^2$$

Experiments & Results

- **Baseline features:**
 - MFCC: 13-dimensional mel frequency cepstral coefficients along with veclocity and acceleration coefficients to make 39 dimensional features.
 - ► **AAMF:** Auditory-inspired amplitude modulation features (40-dimensional)[4].
 - DNN: Deep neural network(DNN) based feature mapping on both MFCC and AAMF features are considered.

Equal error rate(EER) for different test conditions:

Table: EER using proposed and baseline features

		Test condition	
features		whisper	Neutral
proposed	\mathcal{F} (5)	22.42	6.28
	<i>FoG</i> ₁ (9)	13.00	7.8
	<i>FoG</i> ₂ (12)	14.98	9.14
baseline	MFCC (39)	22.47	6.25
	AAMF (40)	19.81	4.4
	MFCC _{DNN} (39)	17.01	-
	AAMF _{DNN} (40)	16.79	-

- \blacktriangle The combination of \mathcal{F} and \mathcal{F}_1 features (FoG_1) performs the best, when only neutral data used in enrollement and tested using whispered speech.
- \blacktriangle The feature mapping on the baseline feature (MFCC_{DNN} and AAMF_{DNN}) performs better compared to (MFCC and AAMF), when when only neutral data used in enrollement and tested using whispered speech.
- The SV using baseline features requires at least four whisper recordings in the enrollment phase for it to perform better than the proposed features.

- We proposed formant-gaps based features for whispered speaker verification. The experiments revealed that the proposed features are robust to the modes (whisper and neutral) of speech for SV applications.
- Future work : Experimeting with different feature mapping methods for whispered speaker verification.

Acknowledgement: Authors thank the **Pratiksha Trust** for their support.

Data set: We considered data from 3 databases (CHAINS,wTIMIT,TIMIT) with 714 speakers comprising 29232 neutral and 22932 whispered recordings.

N_w^e	AAMF _{DNN}	FoG ₁
0	17.01	13.00
2	14.14	10.82
4	8.61	9.68
6	6.14	8.88
8	4.78	8.46

Conclusion

nainireddy@iisc.ac.in, achuthr@iisc.ac.in, prasantg@iisc.ac.in