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SPIRE LAB, IISc, Bangalore 3



Introduction

Introduction

Goal: Segmentation of the Air-Tissue Boundaries (ATBs) in real time
Magnetic Resonance Imaging (rtMRI) video.

Approach:
ATB segmentation using a convolutional encoder-decoder network
(CEDN) 1

1Yang et. al, ”Object contour detection with a fully convolutional
encoder-decoder network,” CVPR, 2016.
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Introduction

Sentence: ”They own a big house in the remote countryside”
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Introduction

Motivation

Why ATBs?

Speech production modeling1

Text-to-speech synthesis2

Analysis of vocal tract morphology3

Automatic visual augmentation4

1
E. Bresch et. al, ”Seeing speech: Capturing vocal tract shaping using real-time magnetic resonance imaging,” 2008.
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Chandana et. al, ”Automatic visual augmentation for concatenation based synthesized articulatory videos from real-time
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Introduction

Dataset

USC-TIMIT1 corpus

MOCHA-TIMIT sentences

2-Female (F1, F2) and 2-Male (M1, M2).

Subset : 16 Videos from each subject.

Total No of frames: 5779.

Video : 23.18 fps.

Spatial resolution of 68× 68.

1
S.Narayanan et. al, ”Real-time magnetic resonance imaging and electromagnetic articulography database for speech

production research (TC)”, JASA, 2014.
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Introduction

Dataset

Manual annotation:
1 Complete ATBs
2 Upper lip (UL)
3 Lower lip (LL)
4 Tongue base (AVR)
5 Velum tip (VEL)
6 Glottis begin (GLTB)

Number of frames: 1462, 1270, 1642, 1399
for subjects F1, F2, M1, M2 respectively.
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Introduction

Dataset

Ground truth binary image (upper, lower) generation from manually
annotated ATBs.

pixel value = 1 if the manually annotated contour traverses through
that pixel, otherwise pixel value = 0.
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Methodology

Proposed CEDN based ATB segmentation

Illustration of the steps in the proposed CEDN based approach
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Methodology

Proposed CEDN based ATB segmentation

Preprocessing

Enhancement using the image processing technique.1

To reduce the image artifacts for better performance of the ATB
segmentation.

1Kim et.al, ”Enhanced airway-tissue boundary segmentation for real-time
magnetic resonance imaging data,” ISSP, 2014.
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Methodology

Proposed CEDN based ATB segmentation

CEDN architecture1

1 Encoder: 13 convolutional layered VGG-16 architecture.

2 Decoder with less number of layers.

3 Two separate CEDNs for upper and lower contour prediction.

1
Yang et. al, ”Object contour detection with a fully convolutional encoder-decoder network,” CVPR, 2016.
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Methodology

Proposed CEDN based ATB segmentation

CEDN based contour prediction

1 Training: preprocessed input images and ground truth binary images
(upper, lower)

2 Both encoder and decoder weights are learnt during training.

3 Outputs a probability image with pixel values range from 0 to 1
(upper∗, lower∗).

4 1 and 0 indicate the most and least probable ATB pixels respectively.
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Methodology

Proposed CEDN based ATB segmentation

Binary Image Generation and Perimeter Filtering

1 Thresholding: To obtain the binary images (upper∗b , lower∗b ).

2 Best threshold: Decided based on the performance on the validation
data.

3 upper∗p, lower∗p: Contain only the perimeter pixels of the detected
closed ATB in binary images.

4 perimeter pixel: Non-zero and connected to at least one zero-valued
pixel with 4-connectivity.
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Methodology

Proposed CEDN based ATB segmentation

Within Vocal Tract ATB Prediction

1 Predicts ATBs within the vocal tract from upper∗p, lower∗p and fixed
contour (C3)

2 Contour coordinates: pixel indices with value one are sorted in
clockwise direction.

3 Contour pruning1 to obtain ATBs within the vocal tract.

4 smoothing using a moving average filter with size q × q.

5 q is decided based on the performance on the validation data.

1
A. Koparkar et. al, ”A supervised air-tissue boundary segmentation technique in real-time magnetic resonance imaging

video using a novel measure of contrast and dynamic programming,” ICASSP, 2018.
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Experiments

Experimental Setup

Baselines:

Maeda grid-line1 (MG).

Fisher-discrimination measure based segmentation2 (SFDM)

fully convolutional networks based segmentation3 (SFCN)

1
Kim et.al, ”Enhanced airway-tissue boundary segmentation for real-time magnetic resonance imaging data,” ISSP, 2014.
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Experiments

Experimental Setup

3 types of experiments:

Seen subject condition

Unseen subject condition

Adaptation using unseen subject’s data
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Experiments

Experimental Setup

Seen subject condition:

4-fold cross validation.

Training set: ∼ 2900.

Development and Test sets: ∼ 1443.

30 epochs, early stopping condition.
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Experiments

Experimental Setup

Unseen subject condition:

4-fold cross validation.

Training set: ∼ 4334.

Development and Test sets: ∼ 1443.

50 epochs.
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Experiments

Experimental Setup

Adaptation using unseen subject’s data:

Minimum number of unseen subject’s images required to be better
than MG.

Trained model is adapted from P many frames from adaptation set (P
= 0,10,20,30).
Last 5 deconvolutional layers are only learned.
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Experiments

Evaluation metric

DTW distance1: Measures the closeness of the estimated contour to
the ground truth contour (unit:pixel).

1
Berndt et. al, ”Using dynamic time warping to find patterns in time series,” KDD, 1994.
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Results

Seen subject condition

Approach Upper Lower

MG 1.13± 0.23 1.27± 0.36
SFDM 1.08± 0.20 1.14± 0.29
SFCN 1.03± 0.20 1.13± 0.26
CEDN 1.10± 0.20 1.09± 0.24

Average (± standard deviation) DTW distance across all the subjects (blue
indicates the least DTW distance)

CEDN based approach gives better performance for lower contours
compared to baselines.
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Results

Unseen subject condition

Approach Upper Lower

MG 1.13± 0.23 1.27± 0.36
SFDM 2.34± 0.47 2.06± 0.78
SFCN 2.79± 0.35 13.3± 0.98
CEDN 1.65± 0.30 1.72± 0.32

Average (± standard deviation) DTW distance across all the subjects (blue and
green colours indicate first and second least DTW distances respectively)

CEDN based approach gives better performance compared to the
supervised approaches (SFDM and SFCN).

Better generalizability for new subjects.
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Results

Adaptation using unseen subject’s data

Bar plot - DTW distance on the validation data using CEDN, Errorbar - std, Blue
line - DTW distance using MG.

CEDN models yield better validation data performance than the MG scheme
with 30 adaptation images.
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Results

Adaptation using unseen subject’s data

Sub
Upper Contour Lower Contour
MG CEDN MG CEDN

F1 1.03±0.27 1.02± 0.20 1.04±0.21 1.00± 0.21
F2 1.20±0.24 1.16± 0.22 1.32±0.25 1.21± 0.25
M1 1.23±0.19 1.21± 0.24 1.19± 0.53 1.44±0.26
M2 1.20±0.24 1.18± 0.20 1.30±0.26 1.00± 0.14
Avg 1.17±0.23 1.14± 0.20 1.21±1.21 1.17± 0.21

(Average (± std) DTW distance using MG and CEDN (with 30 adaptation
images) for test data (blue colour indicates the least DTW distance)

SFCN and SFDM approaches with 30 adaptation images failed to perform
better than the MG approach

SPIRE LAB, IISc, Bangalore 33



Results

Adaptation using unseen subject’s data

Sub
Upper Contour Lower Contour
MG CEDN MG CEDN

F1 1.03±0.27 1.02± 0.20 1.04±0.21 1.00± 0.21
F2 1.20±0.24 1.16± 0.22 1.32±0.25 1.21± 0.25
M1 1.23±0.19 1.21± 0.24 1.19± 0.53 1.44±0.26
M2 1.20±0.24 1.18± 0.20 1.30±0.26 1.00± 0.14
Avg 1.17±0.23 1.14± 0.20 1.21±1.21 1.17± 0.21

(Average (± std) DTW distance using MG and CEDN (with 30 adaptation
images) for test data (blue colour indicates the least DTW distance)

SFCN and SFDM approaches with 30 adaptation images failed to perform
better than the MG approach

SPIRE LAB, IISc, Bangalore 33



Discussion

Section 5

1 Introduction
2 Methodology
3 Experiments
4 Results
5 Discussion
6 Summary
7 Acknowledgement

SPIRE LAB, IISc, Bangalore 34



Discussion

Reasons for better performance:

1 Supervised nature - overcomes imaging artifacts and grainy noise.

2 Light decoder, learning both encoder and decoder weights, direct
prediction of ATBs from network - requires limited number of training
images

3 Perimeter filtering - precise boundary pixels

CEDN does not perform better in upper contour predictions in some cases
due to having cluster of points near velum region.
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Summary

Conclusions

Proposed method yields better performance than the baselines.

Better generalizability compared to the supervised baselines.
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Summary

Conclusions

Proposed method yields better performance than the baselines.

Better generalizability compared to the supervised baselines.

Future Work

Adaptive thresholding to generate binary images from the CEDN
output probability images.
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