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» Consider a broadband MIMO system:

M oo
ml[n]zz Z H;jin—mlsj[m] 1<i<N

j=1m=—o0
x(z) = s(2)H(z)
» We are interested in estimating the source signals s(z) without
knowledge of the channel transfer functions H (z)

» Can we use a narrowband solution as a guide?

> Stationary problem requires higher-order statistics
» Non-stationary problem can be solved using generalised eigenvalue
decomposition (GEVD)
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» Narrowband: Parra and Sajda, Yeredor, Tomé
» Approach:

1.

Gk wN

6.

Assume sources have non-stationary statistics

Assume channel mixing matrix is stationary

Collect two datasets at different times

Form two space-time covariance matrices

Calculate GEVD: AU = BUA

Use matrix of generalised eigenvectors to unmix signals

» Broadband algorithms:
> Corr, Pestana, Weiss, Redif, & Moonen
> Redif
» No analysis showing validity of step 6 or conditions under which it
works
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1. Existence of pGEVD

> GEVD not well defined if both matrices are rank deficient (Bai)
— Without loss of generality, we assume that B(z) is invertible

»> Weiss et. al. show that a parahermitian pEVD exists but with
caveats

» GEVD can be cast as a parahermitian EVD

becomes:

where
V(z) = L(2)U(z)

— L(z) is derived from B(z) and is full rank
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1. Existence of pGEVD ...

> Weiss et. al. show that:
e The generalised eigenvalues A(z) exist as unique, convergent
but likely infinite-length Laurent series provided they are Holder
continuous on the unit circle
e [f the eigenvalues are analytic functions on the unit circle, and
V' (z) is Holder continuous with « > 1 on the unit circle, then the
generalised eigenvectors U(z) exist as a convergent Laurent series.
e The generalised eigenvectors U (z) are unique up to an arbitrary
phase response
e Analytic eigenvalues do not exist if C(z) can be made block
pseudo-circulant via a paraunitary similarity transformation
e If the generalised eigenvalues or eigenvalues are not analytic,
they can generally be approximated by Laurent polynomials.
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2. Relationship between pGEVD and BB-BBS

> We have two space-time covariance matrices:
Ri(2) = H"(2)S;(2)H(z) 1<i<?2

where S;(z) is the cross spectral density (CSD) matrix for the i-th
dataset and is diagonal

> pGEVD requires that R2(z) must be full rank
Hence H(z) and S2(z) need to be full rank i.e. M < N

If M < N we have an under-determined BSS problem: assume
M= N.
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2. Relationship between pGEVD and BB-BBS ...
» Consider two pGEVD Problems:

R1(2)U(z) = R2(2)U(2)AR(2)
51(2)V(2) = 52(2)V(2)As(2)
> After some algebra we find:
Ar(z) = As(2) (= A(2))
A(z) = 51( )/S2(z)
U(z) = H ' (2)V(2)

» Hence U (%) is nearly the unmixing matrix
— Need to look at V'(z)
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2. Relationship between pGEVD and BB-BBS ...
> Consider V(z) in:

S1(2)V(z) = S2(2)V(2)A(z)

> Note S1(z), Sa2(z) and A(z) are diagonal
» After some maths we find:

where A(z) is a block-diagonal matrix and II is a permutation
» The size of the blocks in A(z) is determined by the algebraic
multiplicity of the eigenvalues
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1. Signal Recovery

> Recall that
x(z) = s(2)H(z)
and
U(z) = H ' (2) A(2)II
> Hence

3(z) =x(2)U(z) = s(2)A(2)II

P Thus source signals with distinct PSD ratios can be recovered up
to a scaling and permutation

> Source signals with identical PSD ratios could be subject to
parunitary mixing as well
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The analysis assumes the existence of an analytic pGEVD

Existing algorithms are based on the use of pEVD algorithms
which produce majorised solutions

Top: Majorised Eigenvalues A(z)
— Redif algorithm (not analytic)
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In the absence of an analytic pGEVD, the simulations were based
on a pseudo-algorithm which requires human intervention

The permutation that makes the eigenvalues a smooth function of
frequency is determined manually
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Expt. 1: Distinct Spectrally Unmajorised Sources
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Top: Analytic Eigenvalues A(z)
— Pseudo-analytic algorithm

Bottom: PSD Ratios S;(z)/S2(2)

Signal Separation Matrix
H(z)U(z)
— Good separation
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Expt. 2: Indistinct Sources
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Top: Analytic Eigenvalues A(z)
— Pseudo-analytic algorithm

Bottom: PSD Ratios S;(z)/S2(2)

Signal Separation Matrix
H(2)U(z)
— Poor separation
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Broadband blind signal separation problem with non-stationary
signals

Potentially solution using a polynomial GEVD (generalisation of
narrowband case)

pGEVD can be shown to exist with similar caveats to the pEVD
(Weiss et. al.)

Need PSD ratios (eigenvalues) to be distinct
Signals are recovered up to scaling and permutation

Need an analytic pGEVD algorithm
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