An Improved Air Tissue Boundary Segmentation Technique for Real Time Magnetic Resonance Imaging Video Using SegNet

Valliappan CA¹, Avinash Kumar², Renuka Mannem¹, Karthik GR¹, Prasanta Kumar Ghosh¹

¹SPIRE LAB, Electrical Engineering Indian Institute of Science (IISc), Bangalore, Karnataka, India ²Electrical and Electronics Engineering, National Institute of Technology, Surathkal, Karnataka, India

イロト 不良と 不良と 不良と

May 17, 2019

Section 1

1 Introduction

- 2 Methodology
- **3** Experiments
- 4 Results
- 5 Discussion
- 6 Summary

7 Acknowledgement

Э

《日》 《圖》 《문》 《문》

Introduction

 Goal: Segmentation of the Air-Tissue Boundaries (ATBs) with minimum number of training videos

3

イロト イヨト イヨト イヨト

Introduction

Goal: Segmentation of the Air-Tissue Boundaries (ATBs) with minimum number of training videos

rt-MRI Images

Binary Mask Images

Air Tissue Boundaries

イロン イヨン イモン イモン

3

Introduction

Goal: Segmentation of the Air-Tissue Boundaries (ATBs) with minimum number of training videos

rt-MRI Images

Binary Mask Images

Air Tissue Boundaries

イロト イポト イヨト イヨト

 Approach: Semantic segmentation using Segmentation Network (SegNet).

Motivation

Need for study

Understanding speech production.

4

E

Dataset

USC-TIMIT corpus

- **2-Female** (F1, F2) and **2-Male** (M1, M2).
- Subset : 16 Videos from each subject.
- Video : 23.18 fps
- Spacial resolution of 68×68 .

<ロ> (日) (日) (日) (日) (日)

Dataset

Manual annotation:

- 1 Complete ATBs
- 2 Upper lip (UL)
- 3 Lower lip (LL)
- 4 Tongue base (AVR)
- 5 Velum tip (VEL)
- 6 Glottis begin (GLTB)
- Number of frames: 1462, 1270, 1642, 1399 for subjects F₁, F₂, M₁, M₂ respectively.
- Division of tissue regions into 3 masks.

イロン イヨン イヨン イヨン

Section 2

1 Introduction

3 Experiments

4 Results

5 Discussion

6 Summary

7 Acknowledgement

Э

ヘロト ヘアト ヘビト ヘビト

Proposed SegNet based Approach

Illustration of the steps in the proposed SegNet based approach

Proposed SegNet based segmentation

SegNet architecture¹

1 Symmetric encoder-decoder.

¹Karen et. al, "Very Deep Convolutional Networks for Large-Scale Image Recognition," CoRR, 2014.

Proposed SegNet based segmentation

SegNet architecture¹

1 Symmetric encoder-decoder.

2 Three Segnets: One SegNet for each mask.

¹Karen et. al, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 🔄 RR, 2014. 🔫 🗄 👘 🚊 🔗 ੧, ୯

Proposed SegNet based segmentation

SegNet architecture¹

- **1** Symmetric encoder-decoder.
- 2 Three Segnets: One SegNet for each mask.
- **3** SegNet_i : Does a given pixel belong to mask_i or air cavity region?

¹Karen et. al, "Very Deep Convolutional Networks for Large-Scale Image Recognition," CoRR, 2014. () .

Contour Prediction

- **Stage 1:** Canny edge detection
- **Stage 2:** Connecting edges via concave hull algorithm ¹

¹ J.-S. Park et. al "A new concave hull algorithm and concaveness measure for n-dimensional datasets", 2018 📑 🔗 🖓

Contour Prediction

- **Stage 1:** Canny edge detection
- **Stage 2:** Connecting edges via concave hull algorithm ¹

¹J.-S. Park et. al "A new concave hull algorithm and concaveness measure for n-dimensional datasets", 2018 🚊 🔗 🔍

《日》 《圖》 《言》 《言》

SPIRE LAB, IISc, Bangalore

æ

Obtain **upper** and **lower** contours within the vocal tract

《口》 《圖》 《臣》 《臣》

Э

Obtain upper contour within vocal tract:

3

◆□→ ◆圖→ ◆注→ ◆注→

Obtain lower contour within vocal tract:

Obtain lower contour within vocal tract:

SPIRE LAB

Contour Pruning

Obtain lower contour within vocal tract:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SPIRE LAB

Contour Pruning

Obtain lower contour within vocal tract:

イロン イタン イヨン イヨン

 $2^{nd} \ {\rm order} \ {\rm polynomial} \ {\rm fit}$

E

Proposed SegNet based Approach

Illustration of the steps in the proposed SegNet based approach

Section 3

1 Introduction

2 Methodology

3 Experiments

4 Results

5 Discussion

6 Summary

7 Acknowledgement

э

イロン 不良と 不良と 不良と

Experimental Setup

Baselines:

Maeda grid-line¹ (MG).

 $^{^{1}}$ Kim et.al, "Enhanced airway-tissue boundary segmentation for real-time magnetic resonance imaging data," ISSP 2014. \circ \circ

Experimental Setup

Baselines:

- Maeda grid-line¹ (MG).
- Fisher-discrimination measure based segmentation² (FDM)

¹Kim et.al, "Enhanced airway-tissue boundary segmentation for real-time magnetic resonance imaging data," ISSP, 2014.

SPIRE LAB

Experimental Setup

Baselines:

- Maeda grid-line¹ (MG).
- Fisher-discrimination measure based segmentation² (FDM)
- fully convolutional networks based segmentation³ (FCN)

¹Kim et.al, "Enhanced airway-tissue boundary segmentation for real-time magnetic resonance imaging data," ISSP, 2014.

²A. Koparkar et. al, "A supervised air-tissue boundary segmentation technique in real-time magnetic resonance imaging video using a novel measure of contrast and dynamic programming," ICASSP, 2018.

³Valliappan CA et. al, Air-tissue boundary segmentation in real-time magnetic resonance imaging video using semantic segmentation with fully convolutional networks," Interspeech, 2018

■ 4-fold setup

Э

イロン イヨン イモン イモン

- 4-fold setup
- Training set : ~ 2900 .
- \blacksquare Development & Test set : ~ 1443

3

イロン イヨン イヨン イヨン

- 4-fold setup
- Training set : ~ 2900 .
- \blacksquare Development & Test set : ~ 1443
- **30 epochs**, early stopping condition.

3

イロト 不良と 不良と 不良と

- 4-fold setup
- Training set : ~ 2900 .
- \blacksquare Development & Test set : ~ 1443
- **30 epochs**, early stopping condition.

3

イロト 不良と 不良と 不良と

Experimental Setup-2

 Estimating the minimum number of rtMRI videos required for training for FCN and SegNet.

《日》 《圖》 《臣》 《臣》

Experimental Setup-2

- Estimating the minimum number of rtMRI videos required for training for FCN and SegNet.
- 8 Models of FCN and SegNet
- The i^{th} model i training videos from four subjects, where $i \in \{1, 2, ... 8\}$.

イロト イポト イヨト イヨト

Experimental Setup-2

- Estimating the minimum number of rtMRI videos required for training for FCN and SegNet.
- 8 Models of FCN and SegNet
- The i^{th} model i training videos from four subjects, where $i \in \{1, 2, \dots 8\}$.
- Each video ~90 frames
- \blacksquare Fixed Development & Test set : ~ 1443
- **30 epochs**, early stopping condition.

イロト イヨト イヨト

Evaluation metrics

DTW distance¹: Measures the closeness of the estimated contour to the ground truth contour (unit:pixel).

Evaluation metrics

DTW distance¹: Measures the closeness of the estimated contour to the ground truth contour (unit:pixel).

■ **Pixel accuracy**²: To evaluate the performance of FCN and SegNet.

¹Berndt et. al, "Using dynamic time warping to find patterns in time series," KDD, 1994.

² J. Long et. al, "Fully convolutional networks for semantic segmentation", 2015.□ > < @ > < ≧ > < ≧ >

Section 4

- 1 Introduction
- 2 Methodology
- 3 Experiments
- 4 Results
- 5 Discussion
- 6 Summary

Э

イロン 不良と 不良と 不良と

DTW distances (Upper ATB)

	Upper ATB					
SUB	MG	FCN	SegNet	FDM		
F_1	1.02 ± 0.19	0.91 ± 0.21	0.83 ± 0.11	0.94 ± 0.17		
F_2	1.24 ± 0.29	1.08 ± 0.19	0.96 ± 0.15	1.16 ± 0.19		
M_1	1.10 ± 0.20	1.02 ± 0.20	1.15 ± 0.16	1.11 ± 0.20		
M_2	1.19 ± 0.24	1.09 ± 0.21	1.10 ± 0.19	1.10 ± 0.23		
AVG:	1.13 ± 0.22	1.02 ± 0.20	1.02 ± 0.15	1.08 ± 0.19		

Average (\pm standard deviation) DTW distance of the predicted upper ATBs within the vocal tract

ъ

イロン イタン イヨン イヨン

DTW distances (Upper ATB)

	Upper ATB					
SUB	MG	FCN	SegNet	FDM		
F_1	1.02 ± 0.19	0.91 ± 0.21	0.83 ± 0.11	0.94 ± 0.17		
F_2	1.24 ± 0.29	1.08 ± 0.19	0.96 ± 0.15	1.16 ± 0.19		
M_1	1.10 ± 0.20	1.02 ± 0.20	1.15 ± 0.16	1.11 ± 0.20		
M_2	1.19 ± 0.24	1.09 ± 0.21	1.10 ± 0.19	1.10 ± 0.23		
AVG:	1.13 ± 0.22	1.02 ± 0.20	1.02 ± 0.15	1.08 ± 0.19		

Average (\pm standard deviation) DTW distance of the predicted upper ATBs within the vocal tract

SegNet yields better or comparable performance relative to baselines.

Ξ

ヘロト 人間ト 人団ト 人団ト

DTW distances (Lower ATB)

	Lower ATB					
SUB	MG	FCN	SegNet	FDM		
F_1	1.21 ± 0.21	1.00 ± 0.25	0.92 ± 0.17	0.99 ± 0.23		
F_2	1.28 ± 0.27	1.13 ± 0.31	1.12 ± 0.29	1.24 ± 0.25		
M_1	1.26 ± 0.60	1.17 ± 0.25	1.16 ± 0.26	1.17 ± 0.26		
M_2	1.35 ± 0.30	1.21 ± 0.23	1.18 ± 0.24	1.16 ± 0.41		
AVG:	1.27 ± 0.35	1.13 ± 0.26	1.09 ± 0.23	1.14 ± 0.29		

Average (\pm standard deviation) DTW distance of the predicted lower ATBs within the vocal tract

Э

イロン イボン イヨン イヨン

DTW distances (Lower ATB)

	Lower ATB					
SUB	MG	FCN	SegNet	FDM		
F_1	1.21 ± 0.21	1.00 ± 0.25	0.92 ± 0.17	0.99 ± 0.23		
F_2	1.28 ± 0.27	1.13 ± 0.31	1.12 ± 0.29	1.24 ± 0.25		
M_1	1.26 ± 0.60	1.17 ± 0.25	1.16 ± 0.26	1.17 ± 0.26		
M_2	1.35 ± 0.30	1.21 ± 0.23	1.18 ± 0.24	1.16 ± 0.41		
AVG:	1.27 ± 0.35	1.13 ± 0.26	1.09 ± 0.23	1.14 ± 0.29		

Average (\pm standard deviation) DTW distance of the predicted lower ATBs within the vocal tract

SegNet yields better or comparable performance relative to baselines.

Ξ

ヘロト 人間ト くほト くほん

Complete ATBs

	C_1		C_{2}	2	C_3	
SUB	SegNet	FCN	SegNet	FCN	SegNet	FCN
F_1	0.88	0.89	0.85	1.05	0.80	0.83
F_2	0.98	1.02	1.15	1.12	0.81	0.80
M_1	1.03	1.03	0.94	1.37	0.79	0.80
M_2	1.03	0.89	1.03	1.01	0.83	0.85

Average DTW distance of the predicted complete ATBs for all the subjects

《日》 《圖》 《문》 《문》 二百

Pixel Accuracy For the SegNet and FCN models

SUB	$Model_1$	$Model_2$	$Model_3$	$Model_4$	$Model_5$	$Model_6$	$Model_7$	$Model_8$
$Mask_1^{seg}$	88.70	99.54	99.53	99.57	99.54	99.54	99.55	99.57
$Mask_2^{seg}$	85.89	98.64	98.65	98.61	98.65	98.60	98.64	98.68
$Mask_3^{\overline{s}eg}$	90.30	99.78	99.77	99.77	99.76	99.76	99.78	99.77
$Mask_1^{fcn}$	85.68	90.89	94.47	96.09	98.14	99.17	99.24	99.28
$Mask_2^{fcn}$	84.12	88.14	93.88	95.51	97.77	98.09	98.08	98.14
$Mask_3^{fcn}$	89.45	93.45	95.80	98.80	99.60	99.71	99.73	99.72

Pixel classification accuracy averaged across all subjects (on test set) for each mask vs number of training videos for SegNet, FCN. (**Bold** indicating the saturation point)

Section 5

- 1 Introduction
- 2 Methodology
- 3 Experiments
- 4 Results

6 Summary

7 Acknowledgement

Э

イロン イポン イヨン イヨン

Discussion

- 1 On an average $\sim 0.70\%$ pixels are being misclassified (unlike 1% for FCN).
- Misclassified pixels boundary region : due to low resolution of the image.
- **3** Precision of annotation : 1 **decimal** place
- 4 Proposed method : Pixel level

Ξ

소리가 소문가 소문가 소문가

Section 6

- 1 Introduction
- 2 Methodology
- 3 Experiments
- 4 Results
- 5 Discussion

Э

イロン 不良と 不良と 不良と

Conclusions

- Proposed method yields better performance than the baseline DTW distance
- SegNet requires only two training videos per subject.

ヘロト 人間ト 人団ト 人団ト

Conclusions

- Proposed method yields better performance than the baseline DTW distance
- SegNet requires only two training videos per subject.

Future Directions

Data augmentation to further reduce the minimum number of training videos required for better pixel accuracy.

ヘロト 人間ト 人団ト 人団ト

Section 7

- 1 Introduction
- 2 Methodology
- 3 Experiments
- 4 Results
- 5 Discussion
- 6 Summary

7 Acknowledgement

э

<ロ> <個> <ヨ> <ヨ>

The authors thank Pratiksha Trust for their support

E DQC

イロン イタン イヨン イヨン

Questions?