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Introduction

Goal: Segmentation of the Air-Tissue Boundaries (ATBs) with
minimum number of training videos

Approach: Semantic segmentation using Segmentation Network
(SegNet).
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Introduction

Motivation

Need for study

Understanding speech production.
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Introduction

Dataset

USC-TIMIT corpus

2-Female (F1, F2) and 2-Male (M1, M2).

Subset : 16 Videos from each subject.

Video : 23.18 fps

Spacial resolution of 68× 68.
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Introduction

Dataset

Manual annotation:
1 Complete ATBs
2 Upper lip (UL)
3 Lower lip (LL)
4 Tongue base (AVR)
5 Velum tip (VEL)
6 Glottis begin (GLTB)

Number of frames: 1462, 1270, 1642, 1399
for subjects F1, F2, M1, M2 respectively.

Division of tissue regions into 3 masks.
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Methodology

Proposed SegNet based Approach

Illustration of the steps in the proposed SegNet based approach
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Methodology

Proposed SegNet based segmentation

SegNet architecture1

1 Symmetric encoder-decoder.

2 Three Segnets: One SegNet for each mask.

3 SegNeti : Does a given pixel belong to maski or air cavity region?

1
Karen et. al, ”Very Deep Convolutional Networks for Large-Scale Image Recognition,” CoRR, 2014.
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Methodology

Contour Prediction

Stage 1: Canny edge detection

Stage 2: Connecting edges via concave hull algorithm 1

1
J.-S. Park et. al “A new concave hull algorithm and concaveness measure for n-dimensional datasets”, 2018
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Contour Pruning
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Contour Pruning

Obtain upper contour within vocal tract:
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Contour Pruning

Obtain lower contour within vocal tract:

2nd order polynomial fit

SPIRE LAB, IISc, Bangalore 13



Methodology

Contour Pruning

Obtain lower contour within vocal tract:

2nd order polynomial fit

SPIRE LAB, IISc, Bangalore 13



Methodology

Contour Pruning

Obtain lower contour within vocal tract:

2nd order polynomial fit

SPIRE LAB, IISc, Bangalore 13



Methodology

Contour Pruning

Obtain lower contour within vocal tract:

2nd order polynomial fit

SPIRE LAB, IISc, Bangalore 13



Methodology

Proposed SegNet based Approach

Illustration of the steps in the proposed SegNet based approach
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Experiments

Experimental Setup

Baselines:

Maeda grid-line1 (MG).

Fisher-discrimination measure based segmentation2 (FDM)

fully convolutional networks based segmentation3 (FCN)

1
Kim et.al, ”Enhanced airway-tissue boundary segmentation for real-time magnetic resonance imaging data,” ISSP, 2014.
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Valliappan CA et. al, Air-tissue boundary segmentation in real-time magnetic resonance imaging video using semantic
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Experiments

Experimental Setup-1 for ATB Estimation

4-fold setup

Training set : ∼ 2900.

Development & Test set : ∼ 1443

30 epochs, early stopping condition.
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Experiments

Experimental Setup-2

Estimating the minimum number of rtMRI videos required for training
for FCN and SegNet.

8 Models of FCN and SegNet

The ith model - i training videos from four subjects, where
i ∈ {1, 2, ...8}.
Each video - ∼90 frames

Fixed Development & Test set : ∼ 1443

30 epochs, early stopping condition.
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Experiments

Evaluation metrics

DTW distance1: Measures the closeness of the estimated contour to
the ground truth contour (unit:pixel).

Pixel accuracy2: To evaluate the performance of FCN and SegNet.

1
Berndt et. al, ”Using dynamic time warping to find patterns in time series,” KDD, 1994.
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the ground truth contour (unit:pixel).

Pixel accuracy2: To evaluate the performance of FCN and SegNet.

1
Berndt et. al, ”Using dynamic time warping to find patterns in time series,” KDD, 1994.

2
J. Long et. al, ”Fully convolutional networks for semantic segmentation”, 2015.
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Results

Results of Experimental Setup-1

DTW distances (Upper ATB)

Upper ATB

SUB MG FCN SegNet FDM

F1 1.02± 0.19 0.91± 0.21 0.83±0.11 0.94± 0.17
F2 1.24± 0.29 1.08± 0.19 0.96±0.15 1.16± 0.19
M1 1.10± 0.20 1.02±0.20 1.15± 0.16 1.11± 0.20
M2 1.19± 0.24 1.09±0.21 1.10± 0.19 1.10± 0.23

AVG: 1.13± 0.22 1.02± 0.20 1.02±0.15 1.08± 0.19

Average (± standard deviation) DTW distance of the predicted upper ATBs
within the vocal tract

SegNet yields better or comparable performance relative to baselines.
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Results

Results of Experimental Setup-1

DTW distances (Lower ATB)

Lower ATB

SUB MG FCN SegNet FDM

F1 1.21± 0.21 1.00± 0.25 0.92±0.17 0.99± 0.23
F2 1.28± 0.27 1.13± 0.31 1.12±0.29 1.24± 0.25
M1 1.26± 0.60 1.17± 0.25 1.16±0.26 1.17± 0.26
M2 1.35± 0.30 1.21± 0.23 1.18± 0.24 1.16±0.41
AVG: 1.27± 0.35 1.13± 0.26 1.09±0.23 1.14± 0.29

Average (± standard deviation) DTW distance of the predicted lower ATBs
within the vocal tract

SegNet yields better or comparable performance relative to baselines.
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Results

Results of Experimental Setup-1

Complete ATBs

C1 C2 C3

SUB SegNet FCN SegNet FCN SegNet FCN

F1 0.88 0.89 0.85 1.05 0.80 0.83
F2 0.98 1.02 1.15 1.12 0.81 0.80
M1 1.03 1.03 0.94 1.37 0.79 0.80
M2 1.03 0.89 1.03 1.01 0.83 0.85

Average DTW distance of the predicted complete ATBs for all the subjects
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Results

Results of Experimental Setup-2

Pixel Accuracy For the SegNet and FCN models

SUB Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8

Maskseg1 88.70 99.54 99.53 99.57 99.54 99.54 99.55 99.57
Maskseg2 85.89 98.64 98.65 98.61 98.65 98.60 98.64 98.68
Maskseg3 90.30 99.78 99.77 99.77 99.76 99.76 99.78 99.77

Maskfcn1 85.68 90.89 94.47 96.09 98.14 99.17 99.24 99.28

Maskfcn2 84.12 88.14 93.88 95.51 97.77 98.09 98.08 98.14

Maskfcn3 89.45 93.45 95.80 98.80 99.60 99.71 99.73 99.72

Pixel classification accuracy averaged across all subjects (on test set) for each mask vs
number of training videos for SegNet, FCN. (Bold indicating the saturation point)
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Discussion

Discussion

1 On an average ∼ 0.70% pixels are being misclassified (unlike 1%
for FCN).

2 Misclassified pixels – boundary region : due to low resolution of the
image.

3 Precision of annotation : 1 decimal place

4 Proposed method : Pixel level
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Summary

Conclusions

Proposed method yields better performance than the baseline – DTW
distance

SegNet requires only two training videos per subject.

Future Directions

Data augmentation to further reduce the minimum number of training
videos required for better pixel accuracy.
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