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Introduction

Speech recognition

...is still a challenging task in adverse environments

TRANSCRIPTION:
”Whatever the case the main focus of attention remains today’s trade report.”
”He said such products would be marketed by other companies with experience in that business.”

CHiME5: Kaldi (optimized AM/LM): 46.6% WER [Du et al., 2018]
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Introduction

Our Contribution:

Complex Neural Beamforming

Main idea:
Spatially select sources using complex neural networks
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Technology

ASR pipeline

End-to-End training

Acoustic front-end
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Technology

Source Separation

Single-channel

Deep Clustering [Hershey et al., 2016]

Attractor Networks [Chen et al., 2016]

Attention Models [Kinoshita et al., 2018]

Multi-channel

Statistical models (CGMM-EM) [Higuchi et al., 2016]

Mask-based beamforming [Erdogan et al., 2016]

Eigenvector beamforming [Pfeifenberger et al., 2017]
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Technology

Limitations

Mask-based beamforming

Cannot separate multiple speakers
(exception: Eigenvector features [Pfeifenberger et al., 2017] )
Performance drops if speaker is moving
Limited to block processing

Attractor Networks / Attention Models

Additional clustering step required (block processing)
Speaker re-identification/tracking only partially solved
No spatial exclusion (background noise)
Block permutation problem (PIT)
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Contribution

Complex Neural Beamforming
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Input signal: Z(k, t) =
C∑
c=1

Sc(k, t)

PCA whitening: Z̄ = UPCAZ ∈ CK×T×M [Kuttruff, 2009]

Weight estimation: W = fΘ(Z̄) ∈ CK×T×M
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Contribution

Complex Neural Beamforming

Z(k, t, 1)

Z(k, t, 2)

Z(k, t,M)

..
.

P
C
A

w
h
it
en

in
g

3
×

cL
S
T
M

3
×

cM
L
P

Y
=

W
H
Z

M ×K K
Y (k, t)

Layer # type activation shape # of parameters

1* cMLP cTanh K(M ×M) 18,468
2 cLSTM cTanh K(M ×M) 147,744
3 cMLP cTanh M(K ×K) 1,579,014
4* cLSTM cTanh K(2M × 2M) 590,976
5 cLSTM cTanh K(2M ×M) 295,488
6 cMLP cNorm K(M ×M) 18,468

*Reduction to 4 layers is possible
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Contribution

Complex LSTM cell
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Contribution

Complex activations

Non-holomorphic functions required for neural beamforming:
Applying BF weights: WH~z

Magnitude normalization: ~z
|~z|2

Phase normalization: z� e−jϕz

Sigmoid activation function: σ(Re{z})
tanh activation function: tanh(|z|)� z

|z|
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Contribution

Complex Gradients

Many non-holomorphic functions are partially differentiable in
their real and imaginary parts:

Separate z ∈ C into z = x + jy

Redefine g(z) to g(z, z∗)

Basis for partial derivatives:
[Wirtinger, 1927, Bouboulis and Theodoridis, 2011]
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Chain rule: ∇z∗ =
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For a real-valued cost function: ∇z =

(
∇z∗

)∗
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Contribution

Cost function

Maximize the ∆SNR: 10log10
|WHS1|2

|WHS2...N |2 − 10log10
||S1||22

||S2...N ||22

complex neural beamformer W = fΘ(Z̄)

estimates a new set of BF weights for each time-freuency bin
instantaneous adaption to isotropic noise or moving speakers

statistical beamformer (i.e. MVDR)

requires a block T of data to estimate BF weights
spatial characteristics must not change during T
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Experiments

Experiment 1: Simulated RIRs

D2D1

S2S1

4m

0m 6m

S3

Simulated living room scenario with multiple moving speakers
from WSJ0, and a 6-channel microphone array.
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Experiments

Experiment 2: Real RIRs

Recording setup for 1792 real 6-channel RIRs.
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Experiments

Results
WER* for the WSJ0 si et 05 set + simulated RIRs:

Scenario BeamformIt MBF** CN-BF
dynamic1 vs. dynamic2 76.7% 46.1% 21.1%
dynamic1 vs. isotropic 17.7% 32.8% 9.0%
static1 vs. isotropic 17.9% 18.5% 6.1%
static1 vs. static3 43.2% 45.6% 13.4%
static2 vs. dynamic1, static3 88.3% 58.3% 33.7%

WER* for the WSJ0 si et 05 set + real RIRs:

Scenario BeamformIt MBF** CN-BF
static1 vs. isotropic 22.8% 21.8% 7.9%
static1 vs. static3 84.7% 73.1% 14.5%

*Google Speech-to-Text API: https://pypi.org/project/SpeechRecognition/
**Mask-based beamforming with block-online processing [Böddeker et al., 2018]
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Conclusion

Conclusion

CN-BF optimizes BF weights for each T-F bin

Outperforms statistical beamformers

Real-time capability down to 1 frame delay
Further research:

Overlapping speaker paths
Speaker (re-)identification
Dependency on trained room acoustics

Thank you for your attention!
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Appendix

Mask-based-BF vs. CN-BF

Mask-based-BF

p(k, t) = fΘ(|Z(k, t,m)|)

Φ̂SS(k) =
1
T

T∑
t=1

Z(k, t)ZH(k, t)p(k, t)

WMVDR(k) =
Φ̂−1

NN
(k)vS(k)

vH
S

(k)Φ̂−1
NN

(k)vS(k)

CN-BF

W (k, t) = fΘ(Z̄(k, t))
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Appendix

PCA whitening

additive mixture: Z(k, t) = S1(k, t) + S2(k, t)

whitening: Z̄(k, t) = UPCA(k, t)Z(k, t)

Z(k,t)
|Z(k,t)|

Z̄(k,t)

|Z̄(k,t)|
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Appendix

Alternatives to CN-BF

Stacking: g(z) = tanh
([Re{z}

Im{z}

])
complex properties are lost (i.e. rotation)

Individual gradients: g(z) = tanh(Re{z}) + i tanh(Im{z})
complex phase gets distorted
recurrent structures become unstable
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Appendix

Image Source Method (ISM)

hm,s(n) =
∑

x∈νm(s)

(1−β)order(x)

4π||m−x|| sinc
(
n− fs

||m−x||
c

)
[Scheibler et al., 2017]
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