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• Sound transmission within reverberant environments:
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Result: Degraded quality in the listening area.

• For enhancing the perceived quality, room impulse response (RIR) equalization
can be used.

• For equalization of a volume, knowledge of RIRs in the target area is needed.

• RIRs are very sensitive to spatial variations.

• Problem: Usually, it is not feasible to measure RIRs at all necessary position.

• This work shows that equalization performance improves when using sparse
RIR estimates from (sub)sampled sound-field data.

1. Introduction

• For equidistant positions rg ∈ G with

G =
{

rg | rg = r0 +
[
gx∆, gy∆, gz∆

]T} , (1)

RIR estimates read

ĥr(n) ≈
∑
g∈N

ϕr(g) h(g, n), (2)

where g =
[
gx, gy , gz

]T spans a uniform grid and
the kernel ϕr(g) approximates the sinc function.

• The Nyquist-Shannon sampling theorem re-
quires

∆ <
c0

2fmax
. (3)

2. Conventional RIR Interpolation

• The idea is to use RIR estimates at wanted posi-
tions r̃d (d ∈ {1, ... , D}) based on spatially sub-
sampled RIRs measured at arbitrary points rm

(m ∈ {1, ... , M})⇒ M < D.

• For r̃d ∈ G, the system of linear equations

m = Ad + η (4)

sets up the reverse interpolation problem to (2).
– m ∈ RLM contains the concatenation of M measured RIRs, each of length L.
– d ∈ RLD contains the concatenation of D wanted RIRs at positions r̃d ∈ G.
– η ∈ RLM comprises the measurement noise and the interpolation error.
– A ∈ RLM×LD performs 3D interpolation in line with (2).

I. Estimation of sparse RIRs at virtual-grid points

• Since M < D, (4) provides an infinite number of least-squares solutions for d .

• Sound-field sparsity in frequency domain [1] allows for using CS methods [2]:

arg min
c∈CLD

∥∥m − AΨHc
∥∥2
`2

s. t. ‖c‖`0
≤ K . (5)

– c = Ψd contains a K -sparse frequency representation of grid RIRs h(g, n).
– Ψ ∈ CLD×LD contains a unitary basis for some frequency domain.

• CS based solution d̂ = ΨHĉ provides estimates of virtual-grid RIRs ĥ(g, n).

II. Reconstruction by using sparse RIR estimates

• For modeling (4) with virtual-grid points satisfying the Nyquist-Shannon sam-
pling theorem, RIR estimates for any position r ∈ R3 are available using

ĥr(n) ≈
∑
g∈N

ϕr(g) ĥ(g, n). (6)

3. RIR Estimation Based on Compressed Sensing
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• The average temporal
masking curve (TMC)
is used to describe the
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• The reshaping method from [3] uses known RIRs hi(n) of length Lh from a
loudspeaker to the i-th position in space.

• With a prefilter a(n) of length La, the overall impulse responses are given by

gi(n) = a(n) ∗ hi(n). (7)

• RIR reshaping is carried out according to the desired and unwanted parts:

gd ,i(n) = wd(n) gi(n), gu,i(n) = wu(n) gi(n). (8)

• The prefilter is obtained by solving the optimization problem given by

arg min
a∈RLa

log
(

fu(a)
fd(a)

)
with fd(a) = ‖gd‖pd

=

 N∑
i=1

Lg−1∑
n=0

|gd ,i(k )|pd

 1
pd

, (9)

and fu(a) = ‖gu‖pu
, accordingly. The vectors gd and gu consist of stacked

desired and unwanted parts of the N global RIRs.

4. Reshaping of RIRs

• Inside an office-sized room, RIRs at M = 150 random positions rm ∈ R2 were
acquired on a plane of size 0.5× 0.5 m.

• For every measured RIR hi(n), an equalizer ai(n) was estimated using (9).

• The target plane was equalized at any point using the prefilter refering to the
closest sampled position.

• Equalization was evaluated by improvement/deterioration of the perceived
echoes in terms of nPRQ [3] (measures the overshot above the TMC).
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Positions of measured RIRs

1.4 1.5 1.6 1.7 1.8 1.9

x in m

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25
y
 i
n
 m

-5

-4

-3

-2

-1

0

1

2

3

∆nPRQ for nearest-neighbor reshaping
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∆nPRQ based on estimates of
sparse RIRs on 18× 18 grid (I.)

1.4 1.5 1.6 1.7 1.8 1.9

x in m

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

y
 i
n
 m

-5

-4

-3

-2

-1

0

1

2

3

∆nPRQ based on reconstruction through
sparse RIR estimates (II.)

5. Experiments and Results

• The traditional approach of RIR reshaping based on the nearest measuring
point yields poor performance in case of a large spatial mismatch.

• Sparse estimates of non-available sound-field data improve the equalization.

• Estimation errors of sparse recovery have less impact than errors due to spatial
mismatch.

6. Conclusions


