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1. Introduction

4. Reshaping of RIRs

e Sound transmission within reverberant environments:
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e The reshaping method from [3] uses known RIRs h;j(n) of length L, from a

1000 2000 3000 4000 loudspeaker to the i-th position in space.
Time Index (n)

e With a prefilter a(n) of length L,, the overall impulse responses are given by
Result: Degraded quality in the listening area.

. . | , o gi(n) = a(n) x hj(n). (7)
For enhancing the perceived quality, room impulse response (RIR) equalization

can be used. e RIR reshaping is carried out according to the desired and unwanted parts:
For equalization of a volume, knowledge of RIRs in the target area is needed.

- | . 90,i(N) = wy(n) gi(n), 9u,i(n) = wy(n) gi(n). (8)
RIRs are very sensitive to spatial variations.

Problem: Usually, it is not feasible to measure RIRs at all necessary position. e The prefilter is obtained by solving the optimization problem given by

This work shows that equalization performance improves when using sparse

N Lg—1 Pd
RIR estimates from (sub)sampled sound-field data. arg min Iog( ul )) with  £,(a) = Hgded _ >4 >4 19q i(K) [P . (9)
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2. Conventional RIR Interpolation and fy(a) = |/gull,,, accordingly. The vectors g, and g, consist of stacked

e For equidistant positions r, € G with desired and unwanted parts of the N global RIRs.

G = {rg [rg =ro+ |0, gy, g A T} , (1)

RIR estimates read

5. Experiments and Results

ST e Inside an office-sized room, RIRs at M = 150 random positions r,, € R? were
- N acquired on a plane of size 0.5 x 0.5 m.

he(n) ~ Zéﬁr(g) h(g, n), (2) ) P . . .

geN R e e e For every measured RIR h;(n), an equalizer a;(n) was estimated using (9).

e The target plane was equalized at any point using the prefilter refering to the
closest sampled position.

where g = |gx, gy, g-| " spans a uniform grid and

the kernel approximates the sinc function. L . L .
#r(g) app e Equalization was evaluated by improvement/deterioration of the perceived

e The Nyquist-Shannon sampling theorem re- echoes in terms of nPRQ [3] (measures the overshot above the TMC).
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2 S Positions of measured RIRs AnPRQ for nearest-neighbor reshaping
sets up the reverse interpolation problem to (2). ~ * T - _ s an
— m € R contains the concatenation of M measured RIRs, each of length L. . A S
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— d € R'P contains the concatenation of D wanted RIRs at positions F4 € G. 315 ‘e @ 315

— 1 € R™ comprises the measurement noise and the interpolation error. 3.1 Sauis :', :ﬁ 3.1
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e Sound-field sparsity in frequency domain [1] allows for using CS methods [2]: 228: : ...." ‘wBene 4 B 2:2
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AnPRQ based on estimates of AnPRQ based on reconstruction through
— ¢ = Wd contains a K-sparse frequency representation of grid RIRs h(g, n). sparse RIRs on 18 x 18 grid (l.) sparse RIR estimates (l1.)

— W ¢ CP*LD contains a unitary basis for some frequency domain.

e CS based solution d = W'e provides estimates of virtual-grid RIRs f)(g, n). 6. Conclusions

Il. Reconstruction by using sparse RIR estimates e The traditional approach of RIR reshaping based on the nearest measuring
e For modeling (4) with virtual-grid points satisfying the Nyquist-Shannon sam- point yields poor performance in case of a large spatial mismatch.
pling theorem, RIR estimates for any position r € R° are available using e Sparse estimates of non-available sound-field data improve the equalization.
» » Estimation errors of sparse recovery have less impact than errors due to spatial
h.(n) ~ h(g, n). 6 * .
r(n) g%mg) (9. ) (6) o
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