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Motivations
• Since its inception, the LMS technique has been tied to learning 

systems (ADALINE = ADAptive Linear Neuron*)

• LMS has been extended to nonlinear neural networks and deep 
learning systems through the backpropagation algorithm

• Analysis and understanding are still catching up

• For communications, simple demodulators provide a useful 
frame of reference for evaluating learning techniques

• Our goal in this paper was a fundamental starting point similar 
to communication textbooks

* B. Widrow, “Thinking about Thinking: The Discovery of the LMS Algorithm,” IEEE Signal Processing 
Magazine, Jan. 2005
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Pulse Amplitude Modulation
• Starting point for developing maximum a posteriori (MAP) and maximum 

likelihood (ML) classification strategies in most communications textbooks
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• Nyquist pulse shapes (Root-
Raised Cosine) →           
orthonormal basis expansion

• Gaussian filtered pulse →           
non-orthogonal basis expansion

Pulse shapeData
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Demodulation
Data can be recovered using basis analysis equations

→  {p(n-kT)} and {q (n-kT)} must be biorthogonal sets
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Demodulator Architecture
• Present synchronized instances of the received signal to a 

neural network for classification
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Neural Network Training
• Supervised learning with backpropagation

• Cost function is mean-squared error

• Neural network outputs interpreted as posterior probabilities

• Batch-mode stochastic gradient descent (SGD)

• 1000 instances per batch

• 2,000 epochs

• Learning rate, h = 0.1

• Training data included noise (Eb/N0 = 7 dB, SER~0.001)
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Elementary Feed-Forward Neural Network
• Single neuron with tanh activation function
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Results – Feed-Forward Network
• Nyquist pulse shape:  FFNN learned 

orthogonal (matched filter) weights

• Gaussian-filtered pulse:  network 
learned biorthogonal weights
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Elementary Convolutional Neural Network
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• All neurons use tanh
activation function

• Nonlinear version of 
matched filter plus zero-
forcing equalizer
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Results – Convolutional Network
• Gaussian-filtered pulse:  CNN 

learned same solution as FFNN

• Performs slightly better than 
matched filter plus ZF equalizer
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Elementary Recurrent Neural Network
• Feed back previous soft symbol decision
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Results – Recurrent Network
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• Gaussian-filtered pulse:  RNN learned matched filter shape near the feedback 
symbol, biorthogonal shape where no symbol information is available

• Performed slightly better than CNN and FFNN
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Conclusions
• Communications:  Elementary neural networks learned 

matched filter or simple equalizer solutions

• Signal processing:  Training process drives system toward 
orthogonal/biorthogonal solution

• Data driven:  Signal-to-noise level during training affects 
balance between noise and orthogonality

• Activation:  tanh served mainly to dampen learning rate

• Cost function:  MSE focuses on signal quality, cross-entropy 
focuses on decision probabilities (equivalent in this simple 
case)


