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Motivations

« Since its inception, the LMS technique has been tied to learning
systems (ADALINE = ADAptive Linear Neuron®)

 LMS has been extended to nonlinear neural networks and deep
learning systems through the backpropagation algorithm

« Analysis and understanding are still catching up

 For communications, simple demodulators provide a useful
frame of reference for evaluating learning techniques

« QOur goal in this paper was a fundamental starting point similar
to communication textbooks

* B. Widrow, “Thinking about Thinking: The Discovery of the LMS Algorithm,” IEEE Signal Processing
Magazine, Jan. 2005
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Pulse Amplitude Modulation

Starting point for developing maximum a posteriori (MAP) and maximum
likelihood (ML) classification strategies in most communications textbooks
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Demodulation

Data can be recovered using basis analysis equations

m(n) = Edkp(n — kT) dy = zm(n)q(n — kT)
k n

— {p(n-kT)} and {q (n-kT)} must be biorthogonal sets
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Demodulator Architecture

* Present synchronized instances of the received signal to a
neural network for classification
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Neural Network Training

« Supervised learning with backpropagation
» Cost function is mean-squared error
* Neural network outputs interpreted as posterior probabilities
« Batch-mode stochastic gradient descent (SGD)
1000 instances per batch
« 2,000 epochs
 Learning rate, n=0.1
* Training data included noise (E,/Ny = 7 dB, SER~0.001)
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Elementary Feed-Forward Neural Network

« Single neuron with tanh activation function

« Nonlinear version of

matched filter (correlation n
detector) —
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* Nyquist pulse shape: FFNN learned
orthogonal (matched filter) weights

» (Gaussian-filtered pulse: network
learned biorthogonal weights

Symbol Error Rate

——RRC pulse, matched filter
RRC pulse, learned filter

—=— GF pulse, matched filter

——GF pulse, learned filter

1078 I I I I I I
0 1 2 3 4 5 6 7 8 9

Symbol Energy / Noise Density (Es/No in dB)
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Elementary Convolutional Neural Network

* Three-node convolutional layer with stride equal to symbol spacing

« All neurons use tanh
activation function

* Nonlinear version of
matched filter plus zero-
forcing equalizer
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Results — Convolutional Network
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Elementary Recurrent Neural Network
« Feed back previous soft symbol decision

« Single neuron uses tanh
activation function
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Results — Recurrent Network

» Gaussian-filtered pulse: RNN learned matched filter shape near the feedback
symbol, biorthogonal shape where no symbol information is available

» Performed slightly better than CNN and FFNN
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Conclusions

« Communications: Elementary neural networks learned
matched filter or simple equalizer solutions

« Signal processing: Training process drives system toward
orthogonal/biorthogonal solution

« Data driven: Signal-to-noise level during training affects
balance between noise and orthogonality

« Activation: tanh served mainly to dampen learning rate

« Cost function: MSE focuses on signal quality, cross-entropy
focuses on decision probabilities (equivalent in this simple
case)
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