

Introduction

- We present an approach for visual speech animation that uses tracked lip motion in frontview 2D videos of a real speaker to drive the lip motion of a synthetic 3D head.
- This makes use of a 3D morphable model (3DMM), built using 3D synthetic head poses, with corresponding landmarks identified in the 2D videos and the 3DMM.
- The experiments address two main questions:
- Q1. Would using different intensities of the same viseme shape, when constructing the 3DMM produce better animation results?
- Q2. Would using both front- and side-view photographs, rather than just a front-view photograph, in the construction of the initial 3D head pose produce better animation results?
- We use ground-truth data (the front-view videos of a speaker [1]) to compare the final synthetic 3D animation results against.

Method

3D Morphable Model (3DMM)

- FaceGen software is used to produce synthetic head poses.
- Principal Component Analysis (PCA) can be applied to the vertices to generate a 3DMM.
- A new pose can be generated as follows:

$$S = \overline{F} + \sum_{i=1}^{K} \alpha_i \sigma_i v_i$$

where $K \leq n - 1$ is the number of principal components and $\alpha_i \in \mathbb{R}^K$ is the shape coefficient.

Mapping 2D to 3D

- Mapping 2D video of a speaker to the 3DMM uses Huber et al's method [2].
- Facial features of a real speaker in a video are tracked using the random cascaded-regression copse (R-CR-C) approach [3].
- Given 51 2D landmarks and the corresponding 3D landmarks (figure 1) a pose of the face is estimated using the Gold Standard Algorithm [2].

Figure 1: The facial landmark points.

PCA shape coefficients, α , is found by minimising the following cost function:

$$E = \sum_{i=1}^{3L} \frac{(y_{3D,i} - y_{2D,i})^2}{2\sigma_{2D}^2} + \|\alpha\|_2^2$$

where *N* is the number of landmarks, *y* is the 2D landmarks represented in homogeneous coordinates, σ_{2D}^2 is an ad hoc variance of these landmarks, and $y_{m2D,i}$ is the projected 3D landmarks to $\overline{a 2D}$ plane using the camera matrix.

Contact Details

Web http://staffwww.dcs.shef.ac.uk/people/R.Algadhy/ **Email** rralkasah1@sheffield.ac.uk

3D VISUAL SPEECH ANIMATION USING 2D VIDEOS

Rabab Algadhy, Yoshihiko Gotoh, Steve Maddock Department of Computer Science, University of Sheffield, United Kingdom

Experiments and Results

Data sets

• Four data sets were used to build different 3DMMs for a speaker - see Table 1.

Number of poses	Front-view			
17 poses	Data set 1			
161 poses	Data set 2			

Table 1: Four data sets that were used to build different 3DMMs for a speaker.

Figure 2: (a): Front (left) and side (right) photographs of a real speaker (ID: S32); (b and c): front and side view of the corresponding 3D heads generated using front photograph only (b), and front and side photographs (c). The lips are more protruded in (c).

Evaluation

- Videos of four female speakers (IDs: S15, S17, S24 and S32) and two male speakers (IDs: S20 and S48) from the Audiovisual Lombard Grid Speech corpus [1] were used for validation.
- For the comparison, Faceware Analyser was used to track the facial features in the groundtruth 2D video and the front-view (2D) of the corresponding 3D animation.
- Two geometric articulatory measurements were calculated from the extracted facial features (width and height of the mouth).
- Given the measurements values, the root mean square error (RMSE) over a sentence was used to evaluate the effectiveness of each 3DMM.

Real speaker

Data set 1

Data set 2

Figure 3: Consecutive frames of the phoneme /w/ during utterance of the letter y for a real speaker (ID: S17) and the corresponding 3D head for each data set.

(1)

(2)

- Front- &
- side-views
- Data set 3
- Data set 4

Data set 3

Data set 4

Results and discussion

- (p=0.0967)

	Front photo			Front & side photo				
ID	17 poses		161 poses		17 poses		161 poses	
	W	Η	W	Η	W	Η	W	Η
S15	0.152	0.120	0.154	0.117	0.129	0.102	0.131	0.087
S17	0.121	0.137	0.115	0.128	0.120	0.109	0.092	0.095
S20	0.239	0.166	0.247	0.158	0.229	0.156	0.244	0.155
S24	0.287	0.141	0.223	0.151	0.260	0.142	0.219	0.123
S32	0.117	0.067	0.115	0.075	0.210	0.067	0.111	0.056
S48	0.199	0.086	0.175	0.080	0.203	0.075	0.149	0.071

Table 2: The RMS error averaged over 4 sentences for width (W) and height (H) of the mouth of the real speakers and their corresponding 3D heads. Values in bold means decreased RMS error. Width and height error= ± 0.001 .

to the ground truth trajectory, as shown in figure 4.

Conclusions

- used to train the 3DMM is increased.
- neutral pose 3D head.
- Future work: evaluation of lip motion from the side-view.

References

- vol. 143, no. 6, pp. EL523–EL529, 2018.
- *Processing Letters*, vol. 22, no. 1, pp. 76–80, 2015.

• The performance of the animated 3D lips improves when a larger number of 3D head poses are used to train the 3DMM, and further improves when front- and side-view photos (figure 2) are used to generate the initial neutral head pose in FaceGen, as shown in figure 3.

• For the 3D heads that contain 161 poses, a t-test suggests a significant difference in RMSE results for the 3D heads that use front- and side-view photos versus front-view photos only (p=0.0292 for width and p=0.0009 for height). Also, there is a significant difference for height between the 3D heads containing 161 poses and 17 poses that are generated using frontand side-view photos (p=0.0135), although there is no significant difference for the width

• Whilst all the trajectories generated using the animation pipeline generally follow the real speaker's trajectory, the trajectories of the 3D heads generated using data set 4 are much closer

Figure 4: Width and height of mouth trajectories of 2D frames of the real speaker (ID:S17) and the corresponding 3D heads whilst uttering the sentence "place green in y zero again".

• The performance of the 3D lip motions is improved when the number of 3D head poses

• It is also improved when a front- and side-view photo is used in the construction of the

[1] Alghamdi, Maddock, Marxer, Barker, and Brown, "A corpus of audio-visual lombard speech with frontal and profile views," JASA,

[2] Huber, Hu, Tena, Mortazavian, Koppen, Christmas, Rätsch, and Kittler, "A multiresolution 3d morphable face model and fitting framework," in Proc. 11th International Conf. on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2016. [3] Feng, and Kittler Huber, Christmas, and Wu, "Random cascaded-regression copse for robust facial landmark detection," *IEEE Signal*