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Introduction

• We present an approach for visual speech animation that uses tracked lip motion in front-
view 2D videos of a real speaker to drive the lip motion of a synthetic 3D head.

• This makes use of a 3D morphable model (3DMM), built using 3D synthetic head poses,
with corresponding landmarks identified in the 2D videos and the 3DMM.

• The experiments address two main questions:
Q1. Would using different intensities of the same viseme shape, when constructing the

3DMM produce better animation results?
Q2. Would using both front- and side-view photographs, rather than just a front-view

photograph, in the construction of the initial 3D head pose produce better animation
results?

• We use ground-truth data (the front-view videos of a speaker [1]) to compare the final
synthetic 3D animation results against.

Method

3D Morphable Model (3DMM)

• FaceGen software is used to produce synthetic head poses.
• Principal Component Analysis (PCA) can be applied to the vertices to generate a 3DMM.
• A new pose can be generated as follows:

S = F +
K
∑
i=1

αiσivi (1)

where K ≤ n− 1 is the number of principal components and αi ∈ RK is the shape coefficient.

Mapping 2D to 3D

Figure 1: The facial landmark points.

• Mapping 2D video of a
speaker to the 3DMM uses
Huber et al’s method [2].

• Facial features of a real
speaker in a video are
tracked using the random
cascaded-regression copse
(R-CR-C) approach [3].

• Given 51 2D landmarks
and the corresponding 3D
landmarks (figure 1) a pose
of the face is estimated us-
ing the Gold Standard Al-
gorithm [2].

• The most likely vector of
PCA shape coefficients, α, is found by minimising the following cost function:

E =
3L
∑
i=1

(y3D,i − y2D,i)
2

2σ2
2D

+ ‖α‖2
2 (2)

where N is the number of landmarks, y is the 2D landmarks represented in homogeneous
coordinates, σ2

2D is an ad hoc variance of these landmarks, and ym2D,i is the projected 3D
landmarks to a 2D plane using the camera matrix.
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Experiments and Results

Data sets

• Four data sets were used to build different 3DMMs for a speaker - see Table 1.

Number of
poses

Front-view Front- &
side-views

17 poses Data set 1 Data set 3

161 poses Data set 2 Data set 4

Table 1: Four data sets that were used to build different 3DMMs for a speaker.

(a)

(b)

(c)

Figure 2: (a): Front (left) and side (right) photographs of a real speaker (ID: S32); (b and
c): front and side view of the corresponding 3D heads generated using front photograph
only (b), and front and side photographs (c). The lips are more protruded in (c).

Evaluation

• Videos of four female speakers (IDs: S15, S17, S24 and S32) and two male speakers (IDs: S20
and S48) from the Audiovisual Lombard Grid Speech corpus [1] were used for validation.

• For the comparison, Faceware Analyser was used to track the facial features in the ground-
truth 2D video and the front-view (2D) of the corresponding 3D animation.

• Two geometric articulatory measurements were calculated from the extracted facial features
(width and height of the mouth).

• Given the measurements values, the root mean square error (RMSE) over a sentence was used
to evaluate the effectiveness of each 3DMM.

Real speaker Data set 1 Data set 2 Data set 3 Data set 4

Figure 3: Consecutive frames of the phoneme /w/ during utterance of the letter y for a real
speaker (ID: S17) and the corresponding 3D head for each data set.

Results and discussion

• The performance of the animated 3D lips improves when a larger number of 3D head poses
are used to train the 3DMM, and further improves when front- and side-view photos (figure
2) are used to generate the initial neutral head pose in FaceGen, as shown in figure 3.

• For the 3D heads that contain 161 poses, a t-test suggests a significant difference in RMSE
results for the 3D heads that use front- and side-view photos versus front-view photos only
(p=0.0292 for width and p=0.0009 for height). Also, there is a significant difference for height
between the 3D heads containing 161 poses and 17 poses that are generated using front-
and side-view photos (p=0.0135), although there is no significant difference for the width
(p=0.0967).

ID
Front photo Front & side photo

17 poses 161 poses 17 poses 161 poses
W H W H W H W H

S15 0.152 0.120 0.154 0.117 0.129 0.102 0.131 0.087
S17 0.121 0.137 0.115 0.128 0.120 0.109 0.092 0.095
S20 0.239 0.166 0.247 0.158 0.229 0.156 0.244 0.155
S24 0.287 0.141 0.223 0.151 0.260 0.142 0.219 0.123
S32 0.117 0.067 0.115 0.075 0.210 0.067 0.111 0.056
S48 0.199 0.086 0.175 0.080 0.203 0.075 0.149 0.071

Table 2: The RMS error averaged over 4 sentences for width (W) and height (H) of the mouth
of the real speakers and their corresponding 3D heads. Values in bold means decreased RMS
error. Width and height error=±0.001.

• Whilst all the trajectories generated using the animation pipeline generally follow the real
speaker’s trajectory, the trajectories of the 3D heads generated using data set 4 are much closer
to the ground truth trajectory, as shown in figure 4.

Figure 4: Width and height of mouth trajectories of 2D frames of the real speaker (ID:S17)
and the corresponding 3D heads whilst uttering the sentence ”place green in y zero again”.

Conclusions

• The performance of the 3D lip motions is improved when the number of 3D head poses
used to train the 3DMM is increased.

• It is also improved when a front- and side-view photo is used in the construction of the
neutral pose 3D head.

• Future work: evaluation of lip motion from the side-view.
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