ENEE408G Lecture-9

Digital Watermarking and Fingerprinting for Digital Rights Protection of Multimedia

- @ URL: http://www.ece.umd.edu/class/enee408g/
- Slides included here are based on Spring 2012 offering in the order of introduction, image, video, speech, and audio. © Copyrighted 2002-2012.
- ENEE408G course was developed @ ECE Department, University of Maryland, College Park. Inquiries can be addressed to Profs. Ray Liu (kjrliu@isr.umd.edu) and Min Wu (minwu@eng.umd.edu).

ENEE408G Capstone -- Multimedia Signal Processing

Last Lecture

- Audio synthesis: MIDI
- Digital Audio Coding/Compression
 - Psychoacoustics properties used in perceptual audio coding
 - MPEG-1 Audio coding

• Today:

- Digital Rights Management of Multimedia via "Watermarking"

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights [2]

Demands on Info. Security and Protection

- Intellectual property management for digital media
 - Promising electronic marketplace for digital music and movies
 - Advantages of digital: perfect reproduction, easy transmission, ...
 - Napster controversy
- Conventional encryption alone still leaves many problems unsolved
 - Protection from encryption vanishes once data is decrypted
 - Still want establish ownership and restrict illegal re-distributions
 - How to distinguish changes introduced by compression vs. malicious tampering?
 - Bit-by-bit accuracy is not always desired authenticity criterion for MM

Digital Watermarking/Data Hiding in Multimedia

• What is Digital Watermarking?

- Examples: *Picture in picture, words in words Silent message, invisible images*
- Secondary information in perceptual digital media data
- The need of watermarking: robust vs. fragile
 - Copyright protection: prove the ownership
 - Fingerprinting: trace the source
 - Copy protection: prevent illegal copying
 - Data authentication: check authenticity of data
 - Fragile or semi-fragile watermarking

Example on Invisible and Robust Watermark

Fragile Watermark Example: Document Authentication

General Framework of Data Hiding

Basic Requirements for (Robust) Watermarking

- Imperceptibility (perceptual transparency)
- Payload
 - the amount of information that can be stored in a watermark
- Robustness
- Security Kerckhoff Principle
 - The method used to encrypt the data is known to an unauthorized party and that the security must lie in the choice of a key.
- Blind and non-blind detection (aka Oblivious vs Non-oblivious)
 - Blind detection ~ does not use the original unmarked copy

Data Embedding by Replacing LSBs

Replace LSB with Pentagon's MSB

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights

Data Embedding by Replacing LSBs (cont'd)

Replace 6 LSBs with Pentagon's 6 MSBs

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights

=> See Lab Project 4 for details

A Simple Audio Watermark in Time Domain

- Put message in the Least-Significant-Bits (LSBs)
 - Encode a message into bits
 - e.g., represent a character string into bits using ASCII code
 - Embedder puts in LSBs of audio samples
 - Repeat embedding the same bit in a few samples if needed
 - Detector retrieves embedded bits from LSBs
 - Perform majority voting if repeated embedding is used
 - Repack bits into message
- Tradeoff between perceptual quality and robustness
 - Compare the embedding in 1st LSBs, 2nd LSBs, ...
- Security
 - Can they see/hear your message?
 - Can other people make imperceptible change to alter your message?

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights [12]

=> See Design Project 4 for details

A More Robust Watermark in Transform Domain

• Embedder: use HAS & embed in perceptually significant freq.

- Subtract host signal, measure similarity (via correlation), & threshold it

Discussions

- Why use noise-like sequence as watermark?
 - Imperceptibility
 - Confidentiality of the embedded data
 - Robustness against jamming
- Imperceptibility
 - Frequency domain embedding: can take advantage of known perceptual properties such as masking
 - Can apply sophisticated HAS models to improve perceptual quality
- Robustness and security
 - Use "attacks" to find weaknesses and improve designs
 - Case study: SDMI public challenge (Fall'00)

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights [14]

Digital Fingerprinting and Tracing Traitors

- Leak of information poses serious threats to government operations and commercial markets
 - e.g., pirated content or classified document

- Promising countermeasure: robustly embed digital fingerprints
 - Insert ID or "fingerprint" (often through robust watermarking) to identify each user
 - Purpose: deter information leakage; digital rights management
 - $\bullet \ provide \ post-delivery \ protection \ complementary \ to \ encryption$
 - Challenge: imperceptibility, robustness, tracing capability

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights [15]

Fingerprinting Curves

Embedded Fingerprinting for Multimedia

Example of Anti-Collusion Fingerprint Code:

Embed 16-bit Code for Detecting ≤ 3 Colluders Out of 20

Case Study: Tracing Movie Screening Copies

- Potential civilian use for digital rights management (DRM)
 - ◆ Copyright industry \$500+ Billion business ~ 5% U.S. GDP
- Alleged Movie Pirate Arrested (23 January 2004)
 - A real case of a successful deployment of 'traitor-tracing' mechanism in the digital realm
 - Use invisible fingerprints to protect screener copies of pre-release movies

 $u_1 \quad \text{Carmine Caridi} \quad \longrightarrow \text{Russell} \quad \longrightarrow \text{ friends} \quad \longrightarrow \text{ Internet}$

Hollywood studio traced pirated version

http://www.msnbc.msn.com/id/4037016/

ENEE408G Capstone -- Multimedia Signal Processing

MM Digital Rights [20]

<u>Summary</u>

- Multimedia watermarking for rights management
- Reading Assignment
 - F. Hartung and M. Kutter: "Multimedia Watermarking Techniques", Proc. of the IEEE, pp.1079-1107, July 1999.
 - M. Wu and B. Liu, "Multimedia Data Hiding", Chapter 10 on SDMI audio watermark challenge, preprint, 2002 (electronic handout).
 - M. Wu, W. Trappe, Z. Wang, and K.J.R. Liu: "Collusion Resistant Fingerprinting for Multimedia", IEEE Signal Processing Magazine, Special Issue on Digital Rights Management, pp.15-27, March 2004. http://www.ece.umd.edu/~minwu/public_paper/Jnl/0403FPcollusion_IEEEfinal_SPM.pdf

• This week's Lab session:

- Continue on audio project

Type-II Relationship Enforcement Embedding

Type-II Relationship Enforcement (cont'd)

General approach:

- Partition host signal space into sub-regions
 - each region is labeled with 0 or 1
 - marked sig. is from a region close to orig. & labeled w/ the bit to hide
- Secondary info. carried solely in X'

ENEE408G Capstone -- Multimedia Signal Processing

• difference (X'-X) doesn't necessarily reflect the embedded data

- Advanced embedding:
 - Combining the two types with techniques suggested by info. theory