

**INTERVIN-BASED STRATEGY FOR EFFICIENT** PROPOSAL ADAPTATION IN POPULATION MONTE CARLO

Víctor Elvira<sup>1</sup>, Émilie Chouzenoux<sup>2</sup>

<sup>1</sup>IMT Lille Douai & CRIStAL, victor.elvira@imt-lille-douai.fr
<sup>2</sup> Center for Visual Computing, Inria Saclay, CentraleSupélec, emilie.chouzenoux@centralesupelec.fr

# INTRODUCTION

- Vector of unknowns  $\mathbf{x} \in \mathcal{D} \subseteq \mathbb{R}^n$  and vector of observed data  $\mathbf{y} \in \mathbb{R}^d$
- Posterior pdf

$$ilde{\pi}(\mathbf{x}|\mathbf{y}) = rac{\ell(\mathbf{y}|\mathbf{x})g(\mathbf{x})}{Z(\mathbf{y})} \propto \pi(\mathbf{x}|\mathbf{y}) = \ell(\mathbf{y}|\mathbf{x})g(\mathbf{x})$$
 (1)

where  $\ell(\mathbf{y}|\mathbf{x})$  is the likelihood function,  $g(\mathbf{x})$  is the prior pdf, and  $Z(\mathbf{y})$  is the normalization factor

**Goal**: Estimate a particular moment f of  $\mathbf{x}$ :

$$I = \frac{1}{Z} \int_{\mathcal{D}} f(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}$$
(2)

# **IMPORTANCE SAMPLING**

- Set of N samples drawn from a proposal pdf,  $q(\mathbf{x})$
- ► 1. Sampling:

# **PROPOSED ALGORITHM: SL-PMC**

- 1. [Initialization]: Set  $\sigma > 0$ ,  $(N, K, T) \in \mathbb{N}^+$ ,  $\{\nu_n\}_{n=1}^N$ . For n = 1, ..., N, select the initial adaptive parameters  $\mu_n^{(1)} \in \mathbb{R}^{d_x}$  and  $\Sigma_n^{(1)} = \sigma^2 \mathbf{I}_{d_x}$ .
- 2. [For t = 1 to T]: 2.1 Draw K samples from each proposal pdf,  $\mathbf{x}_{n,k}^{(t)} \sim q_n^{(t)}(\mathbf{x}; \boldsymbol{\mu}_n^{(t)}, \boldsymbol{\Sigma}_n^{(t)}, \boldsymbol{\nu}_n), \quad n = 1, \dots, N, \quad k = 1, \dots, K.$  (9) 2.2 Compute the importance weights,

$$g_{k}^{0} = \frac{\pi(\mathbf{x}_{n,k}^{(t)})}{\frac{1}{N} \sum_{i=1}^{N} q_{i}^{(t)}(\mathbf{x}_{n,k}^{(t)})}$$
 (10)

2.3 Resample N location parameters {μ<sub>n</sub><sup>(t+1)</sup>}<sub>n=1</sub><sup>N</sup> from the set of NK weighted samples of iteration t using the local resampling strategy [3].
2.4 Adapt the proposal parameters {(μ<sub>n</sub><sup>(t+1)</sup>, Σ<sub>n</sub><sup>(t+1)</sup>)}<sub>n=1</sub><sup>N</sup> according to {μ<sub>n</sub><sup>(t+1)</sup> = μ<sub>n</sub><sup>(t+1)</sup> + θ<sub>n</sub><sup>(t+1)</sup> A(μ<sub>n</sub><sup>(t+1)</sup>) ∇ log π(μ<sub>n</sub><sup>(t+1)</sup>)

$$\mathbf{x}_n \sim q(\mathbf{x})$$
  $n = 1, ..., N$ 

2. Weighting:

$$w_n = rac{\pi(\mathbf{x}_n)}{q(\mathbf{x}_n)}, \quad n = 1, \dots, N$$

Estimators:

$$\hat{I}_{UIS} = \frac{1}{NZ} \sum_{n=1}^{N} w_n f(\mathbf{x}_n), \qquad \hat{I}_{SNIS} = \frac{1}{\sum_{j=1}^{N} w_j} \sum_{n=1}^{N} w_n f(\mathbf{x}_n)$$

- Variance related to the discrepancy between  $\pi(\mathbf{x})|f(\mathbf{x})|$  and  $q(\mathbf{x})$ .
- Finding a good proposal pdf,  $q(\mathbf{x})$ , is critical and challenging

# **MULTIPLE IMPORTANCE SAMPLING**

- Available set of N proposal pdfs,  $\{q_1(\mathbf{x}), \ldots, q_N(\mathbf{x})\}$
- Several sampling and weighting schemes are valid [2], e.g.,
- 1. Sampling: exactly one sample is drawn from each of them, i.e.,

 $\mathbf{x}_n \sim q_n(\mathbf{x}), \qquad n=1,...,N$ 

- ► **2. Weighting:** At least two possible strategies:
  - Option 1: Standard MIS (s-MIS):  $w_n = \frac{\pi(\mathbf{x}_n)}{q_n(\mathbf{x}_n)}, \quad n = 1, ..., N$
  - ► **Option 2**: *Deterministic mixture MIS* (DM-MIS):

$$w_n = \frac{\pi(\mathbf{x}_n)}{\psi(\mathbf{x}_n)} = \frac{\pi(\mathbf{x}_n)}{\frac{1}{2}\sum^N \sigma(\mathbf{x}_n)}, \quad n = 1, \dots, N,$$

$$\left(\boldsymbol{\Sigma}_{n}^{(l+1)}\right) = \left(\boldsymbol{\theta}_{n}^{(l+1)} \mathbf{A}(\tilde{\boldsymbol{\mu}}_{n}^{(l+1)})\right)$$

3. [Output, t = T]: Return the pairs  $\{\mathbf{x}_{n,k}^{(t)}, \mathbf{w}_{n,k}^{(t)}\}$ , for n = 1, ..., N, k = 1, ..., K and t = 1, ..., T.

# (4) NUMERICAL RESULTS

Example 1.

(3)

**Target pdf:** mixture of 5 Gaussians, i.e.,

$$\pi(\mathbf{x}) = rac{1}{5} \sum_{n=1}^{5} \mathcal{N}(\mathbf{x}; \boldsymbol{
u}_i, \boldsymbol{\Sigma}_i), \quad \mathbf{x} \in \mathbb{R}^2,$$
 (11)

- Goal: Estimate the first and second moments, i.e.,  $E_{\tilde{\pi}}[X] = \int x \pi(x) dx$ and  $E_{\tilde{\pi}}[X^2] = \int x \pi(x) dx$ .
- For GR-PMC and LR-PMC, we set proposal covariances  $\Sigma_n = \sigma^2 \mathbf{I}_{d_x}$ , with  $\sigma \in \{1, 3, 5\}$ , while we take  $\sigma = 5$  in SL-PMC. All methods are run with N = 50 proposals (randomly initialized in the square  $[-4, 4] \times [-4, 4]$ ), T = 20 iterations, and K = 20 samples per proposal and iteration.

**Example 2.** Let us consider the random variable (r.v.)  $\mathbf{X} \in \mathbb{R}^{d_x}$ ,  $d_x \ge 2$ . This r.v. is a transformation from  $d_x$ -dimensional multivariate Gaussian  $\overline{\mathbf{X}} \sim \mathcal{N}(\mathbf{x}; \mathbf{0}_{d_x}, \mathbf{C})$  with  $\mathbf{C} = \text{diag}(c^2, 1, ..., 1)$ . The transformed r.v. is

#### $\varphi(\mathbf{x}_n) \quad \overline{N} \sum_{j=1} q_j(\mathbf{x}_n)$

## **POPULATION MONTE CARLO** [1]

- Population Monte Carlo (PMC) is an adaptive IS algorithm [2].
- ► DM-PMC: extension in [3] to the standard PMC.

1. [Initialization]: Set  $\sigma > 0$ ,  $(N, K, T) \in \mathbb{N}^+$ ,  $\{\nu_n\}_{n=1}^N$ . For n = 1, ..., N, select the initial parameters  $\mu_n^{(1)} \in \mathbb{R}^{d_x}$ . Fix the adaptation matrix  $\Sigma = \sigma^2 \mathbf{I}_{d_x}$ .

2. [For t = 1 to T]:

2.1 Draw one sample from each proposal pdf,

$$q_n^{(t)} \sim q_n^{(t)}(\mathbf{x}; \boldsymbol{\mu}_n^{(t)}, \boldsymbol{\Sigma}, \boldsymbol{\nu}_n), \qquad n = 1, \dots, N$$
 (6)

2.2 Compute the importance weights,

$$w_n^{(t)} = \frac{\pi(\mathbf{x}_n^{(t)})}{q_n^{(t)}(\mathbf{x}_n^{(t)})}$$
(7)

2.3 Resample N location parameters  $\{\mu_n^{(t+1)}\}_{n=1}^N$  from the set of N weighted samples of iteration t.

3. **[Output,** 
$$t = T$$
]: Return the pairs  $\{\mathbf{x}_n^{(t)}, w_n^{(t)}\}$ , for  $n = 1, ..., N$  and  $t = 1, ..., T$ 

#### $\mathbf{X} \sim \mathcal{N}(\mathbf{x}; \mathbf{U}_{d_x}, \mathbf{C})$ with $\mathbf{C} = \text{diag}(c^2, 1, ..., 1)$ . The transformed r.v. is computed as $X_j = \bar{X}_j$ , $j \in \{1, ..., d_x\} \setminus 2$ , and $X_2 = \bar{X}_2 - b(\bar{X}_1^2 - c^2)$ , with c = 1 and b = 3. This transformation leads to a complicated banana-shaped distribution with uncorrelated components. In all methods, we set N = 50, K = 20 and T = 20.



versus the dimension  $d_x$ .

### LANGEVIN DIFFUSION SCHEME

#### CONCLUSION

- Joint adaptation of the means and the covariances of the proposals;
- Exploit the geometry of the posterior, with limited parameter
- **Langevin diffusion**: continuous-time Markov process with stationary distribution  $\tilde{\pi}$  [5]
- Unadjusted Langevin algorithm: Discretized Langevin diffusion

 $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \frac{\theta^{(t)}}{2} \mathbf{A}^{1/2}(\mathbf{x}^{(t)}) \nabla \log(\pi(\mathbf{x}^{(t)})) + \sqrt{\theta^{(t)}} \mathbf{A}^{1/2}(\mathbf{x}^{(t)}) \omega^{(t)}$ (8)

with  $\theta^{(t)}$  positive stepsize,  $A(x^{(t)})$  SDP scaling matrix and  $(\omega^{(t)})_{t \in \mathbb{N}}$  zero-mean Gaussian i.i.d. noise.

- Our contribution: Adapt jointly the means and the covariances of the proposals in DM-PMC, making use of the ULA strategy.
  - **Scaling matrix**: Infer the local curvature of the target via second-order information
    - $\Rightarrow$  Increased complexity but assessed performance in the context of MCMC [5].
  - **Stepsize tuning**: Backtracking scheme promotes local increase of the target value.

- tuning;
- Superior performance, especially in high-dimensional problems.

# REFERENCES

[1] V. Elvira, L. Martino, D. Luengo, and M. Bugallo, "Generalized Multiple Importance Sampling", Statistical Science, Vol. 34, no. 1, pp. 129-155, 2019

[2] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert, "Population Monte Carlo", Journal of Computational and Graphical Statistics, pp. 907-929, 2004.

[3] V. Elvira, L. Martino, D. Luengo, and M. Bugallo, "Improving Population Monte Carlo: Alternative Weighting and Resampling Schemes", Signal Processing, vol. 131, pp. 77-91, February, 2017.

[4] G. O. Roberts and O. Stramer, "Langevin diffusions and Metropolis-Hastings algorithms", Methodol. Comput. Appl. Probab., vol. 4, no. 4, pp. 337–357, 2002.

[5] Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, and J.C. Pesquet, "Majorize-Minimize adapted Metropolis-Hastings algorithm," Tech. Rep., 2018, https://hal.archives-ouvertes.fr/hal-01909153.