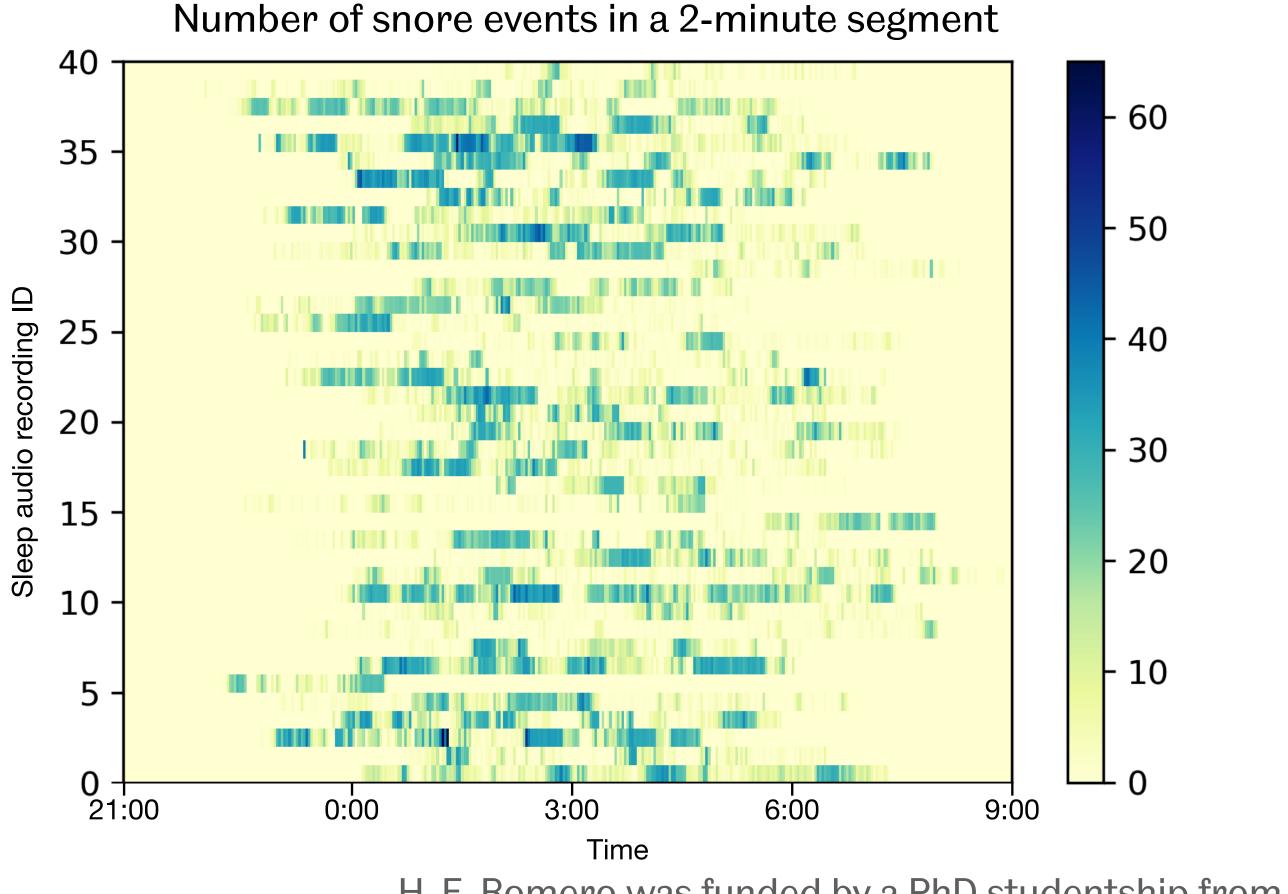
Deep Learning Features for Robust Detection of Acoustic Events in Sleep-Disordered Breathing

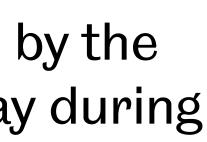
1. Introduction

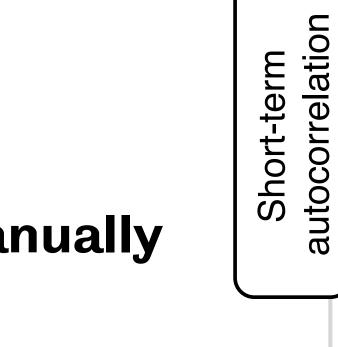
- -Sleep-disordered breathing (SDB) is caused by the partial or complete collapse of the upper airway during sleep.
- -The most prevalent forms of SDB are **snoring**, and obstructive sleep apnoea (OSA).
- The gold standard for diagnosing SDB is the polysomnography (PSG) test.
- -PSG involves sleeping for a complete night in a laboratory while physiological parameters are measured via wired attachments to the body.
- -PSG is expensive, time consuming, and uncomfortable for the patient.
- -Alternatives to the diagnosis of SDB have been explored including at-home PSG, and smartphone-based solutions using acoustic analysis.

2. Sleep Breathing Sound Corpus

- -Acoustic analysis of SDB is a data-scarce field.
- -We created a corpus consisting of **6 hours of manually annotated sleep audio recordings** from 6 male participants.
- -The recordings were made with a smartphone in the home.
- -The annotation scheme considered "snore", "breath", "noisy in-breath", "wheezing", and "other".

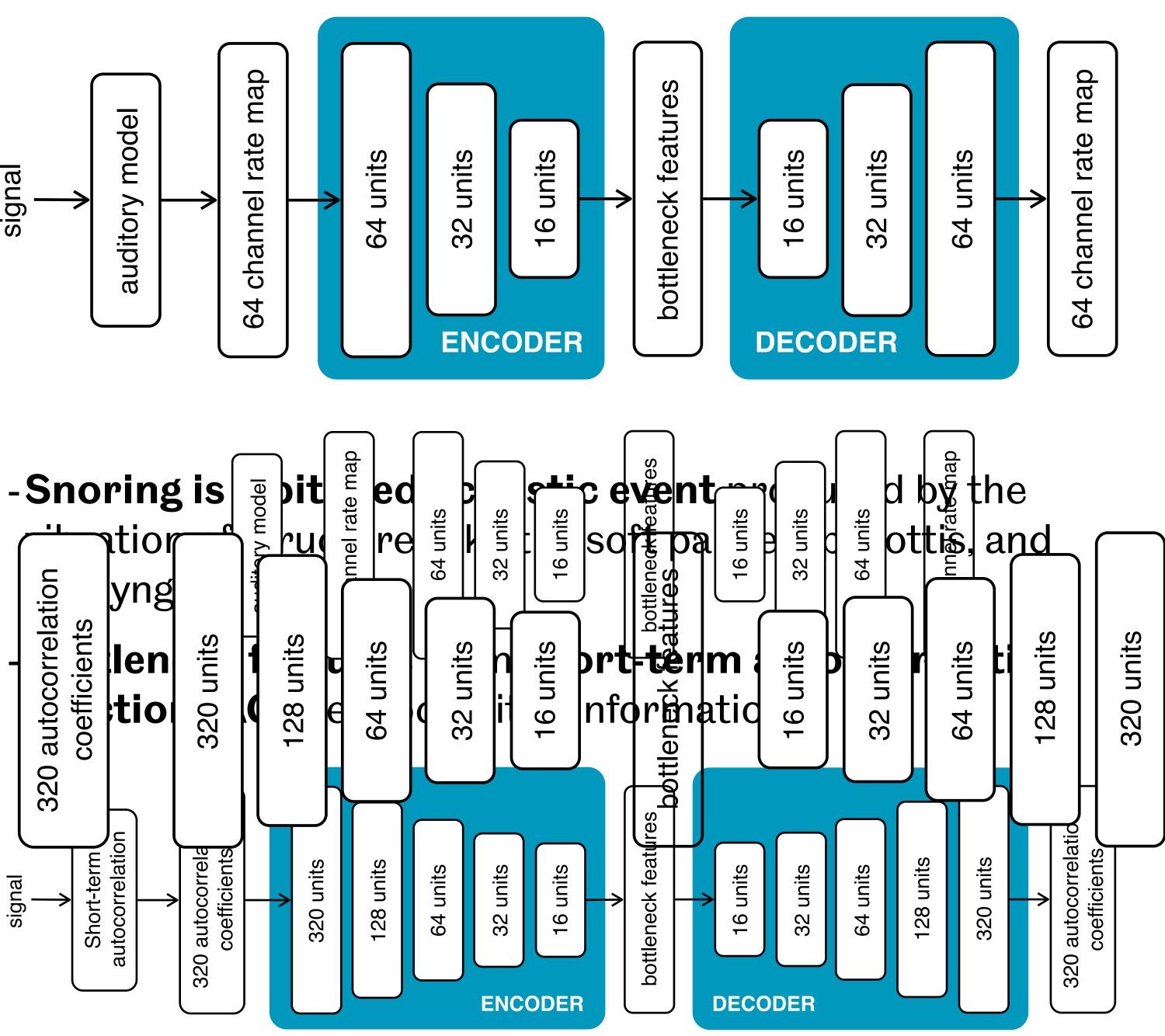


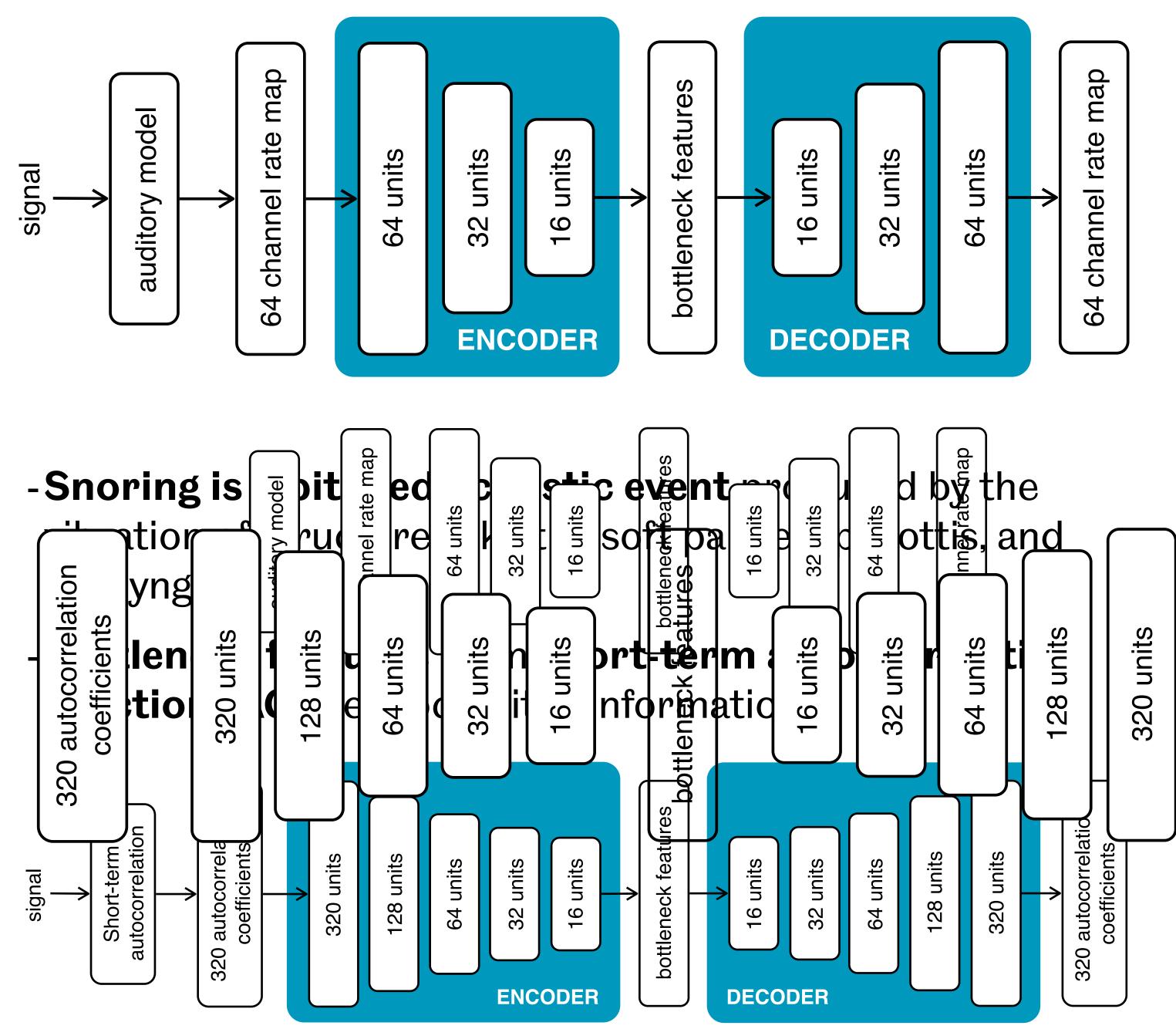




3. System Description

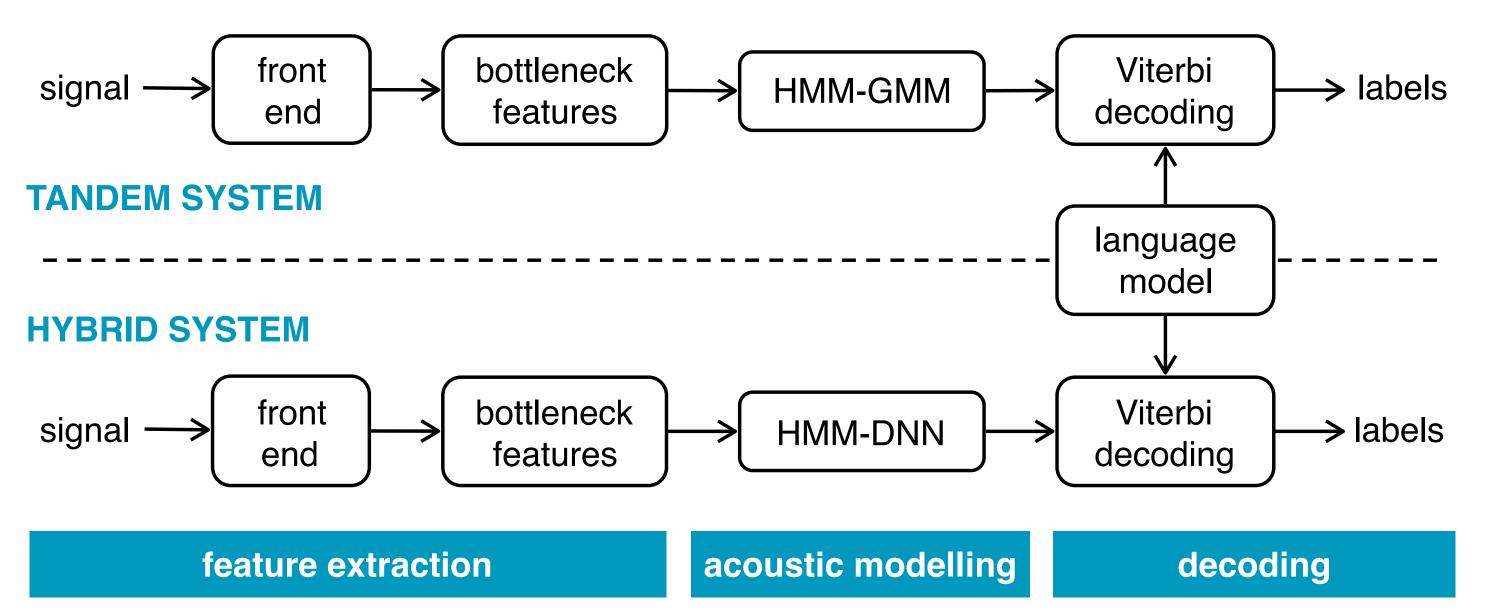
- -We leveraged large amount of unlabelled data using unsupervised learning.
- A bigram language model (LM) was applied during the decoding process to exploit the breathing patterns.
- -Bottleneck features from auditory nerve firing rate maps **(RM)**:





- Given the limited amount of training data, 2 snore detection architectures were investigated.

- Tandem and hybrid snore detection systems:



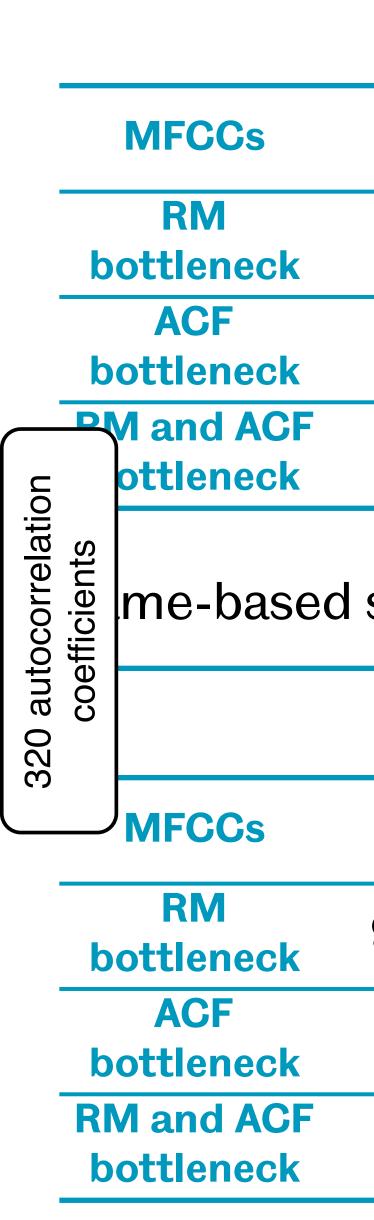
H. E. Romero was funded by a PhD studentship from Passion for Life Healthcare (PFLH) and the Department of Computer Science, University of Sheffield. A. V. Beeston was funded by KTP award 9905 with PFLH.

Hector E. Romero, Ning Ma, Guy J. Brown, Amy V. Beeston and Madina Hasan Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK {heromeroramirez1, n.ma, g.j.brown, a.beeston, m.hasan}@sheffield.ac.uk

4. Evaluation

5. Results

-Snore event error rate:



6. Conclusions

- information.

-The systems are **'snorer-independent'**.

-At event level, the **snore event error rate** was calculated, similar to the word error rate commonly used in ASR.

-At frame level, the **snore F-measure** was computed to evaluate the segmentation quality.

Tandem		Hybrid	
No LM	LM	No LM	LM
19.94%	17.59%	9.40%	9.52%
12.00%	12.13%	13.40%	13.40%
15.24%	14.48%	14.92%	14.92%
10.86%	8.89%	10.22%	9.90%

me-based snore F-measure:

Tandem		Hybrid	
No LM	LM	No LM	LM
90.78%	91.67%	93.60%	93.45%
95.29%	95.23%	90.74%	90.74%
88.34%	88.47%	86.96%	86.96%
94.43%	94.36%	94.73%	94.75%

-Robust snore detection in a home environment, from recordings made using a smartphone, is a challenging task.

- The best performance was obtained using bottleneck features that encode both spectral shape and pitch

- The LM enforces realistic snore event durations.

-In the future we will focus on building systems to detect other forms of SDB, such as OSA.