Introduction

- Speaker Diarization: "Who Spoke When?"
- Unsupervised speaker diarization.
- Uses "Remember–Learn–Transfer" principle to transfer the learned information.
- Reduces the real time factor of two-pass system.

IB based Diarization

- A set of segments \mathcal{X} in an audio is clustered into set of clusters \mathcal{C} preserving the relevant
- information \mathcal{Y} . The objective function is given by

$$\mathcal{F} = I(\mathcal{Y}, \mathcal{C}) - \frac{1}{\beta}I(\mathcal{C}, \mathcal{X})$$

I is mutual information between the variables and β is a Lagrange multiplier.

Two-pass IB based diarization

- First pass: IB based diarization is performed to obtain relative speaker labels.
- ANN Training & LSF Extraction: ANN initialized with *random weights* is trained from scratch on the output boundary labels and the spectral features to obtain latent features (LSF).
- **Second pass:** The LSFs are used along with the spectral features in the second pass of IB system.

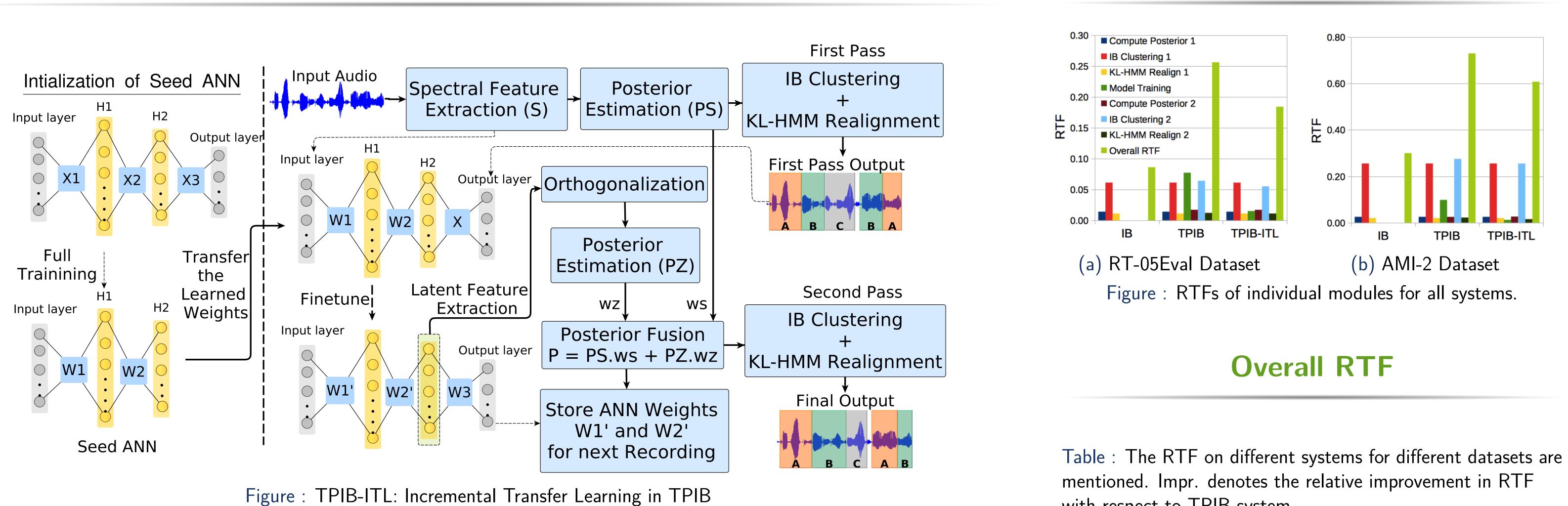
TPIB-ITL

- **Training seedANN:** A seedANN is trained from the first audio to be diarized by the system.
- **First pass:** IB based diarization is performed to obtain relative speaker labels.
- **Remember–Learn–Transfer:** ANN initialized with *weights from seedANN* is fine-tuned on the output boundary labels and the spectral features of the current recording to obtain LSF. Store the fine-tuned ANN for next recording.
- Second pass: A second pass of IB based clustering is performed.

INCREMENTAL TRANSFER LEARNING IN TWO-PASS INFORMATION BOTTLENECK BASED SPEAKER DIARIZATION SYSTEM FOR MEETINGS Nauman Dawalatabad¹, Srikanth Madikeri², C Chandra Sekhar¹, Hema A Murthy¹

¹Indian Institute of Technology Madras, India ²Idiap Research Institute, Martigny, Switzerland

Incremental Transfer Learning in TPIB



Important Result

• TPIB-ITL uses "Remember-Learn-Transfer" principle to diarize new recordings. • Retaining previous knowledge helps to reduce real time factor compared to TPIB system.

Speaker Error Rates

Table : Speaker Error Rate (SER) on different systems are mentioned. T denotes the average SER over all fusing weights combination. Best SER

System	Feature(s)	Dev. Se	et	Test Sets					
		RT-04D	ev RT-04Eval	RT-05Eval	AMI-1	AMI-2			
IB	MFCC	15.1	13.5	16.4	17.9	23.5			
TPIB	LSF	15.1	11.6	14.2	17.5	21.3			
	MFCC+LSF (0.8, 0.2)	13.1	12.5	16.6	16.4	22.7			
	MFCC+LSF (Avg.)	14.9	12.6	15.3	17.8	22.4			
Proposed System									
TPIB-ITL	LSF	15.5	12.5	15.1	17.5	22			
	MFCC+LSF (0.1, 0.9)	15.2	12.2	15	18	21.2			
	MFCC+LSF (Avg.)	15.8	12.5	15.4	17.8	21.9			
TPIB-ITL (Dev.)	LSF	15.5	12.9	14.8	17.5	22.1			
	MFCC+LSF (0.1, 0.9)	15.2	12.5	15	17.5	22			
	MFCC+LSF (Avg.)	15.8	13.3	15.6	17.8	22.5			

he feature fusing weights are mentioned in parentheses. Avg.
on both systems for each dataset is indicated in bold font.

Sys/I

- Recording-specific discrimination is achieved.
- Sequence of recordings does not affect the performance.
- TPIB-ITL also works when only development data in used in incremental learning phase.

Real Time Factors

with respect to TPIB system.

Sys/Dataset	RT-04Dev	RT-04Eval	RT-05Eval	AMI-1	AMI-2
IB	0.070	0.081	0.086	0.241	0.304
TPIB	0.248	0.257	0.254	0.642	0.740
TPIB-ITL	0.175	0.172	0.180	0.485	0.605
Impr. (%)	29.44	33.07	29.13	24.45	18.24

Conclusion

No separate training data is used.

References

[1] Deepu Vijayasenan, Fabio Valente, and Hervé Bourlard. An Information Theoretic Approach to Speaker Diarization of Meeting Data.

IEEE Transactions on Audio, Speech, and Language *Processing*, 17(7):1382–1393, 2009.

[2] Nauman Dawalatabad, Srikanth Madikeri, C. Chandra Sekhar, and Hema A. Murthy.

Two-Pass IB Based Speaker Diarization System Using Meeting-Specific ANN Based Features.

In *Proceedings of INTERSPEECH*, pages 2199–2203, 2016.