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Sys/Dataset RT-04Dev RT-04Eval RT-05Eval AMI-1 AMI-2

1B 0.070 0.081 0.086 0.241 0.304
TPIB 0.248 0.257 0.254 0.642 0.740

TPIB-ITL 0.175 0.172 0.180  0.485 0.605
Impr. (%)  29.44 33.07 29.13 2445 18.24

Two-pass IB based diarization

Important Result

« First pass: |IB based diarization is performed to
obtain relative speaker labels.

« TPIB-ITL uses "Remember—Learn—Transfer" principle to diarize new recordings.

« Retaining previous knowledge helps to reduce real time factor compared to TPIB system.

- ANN Training & LSF Extraction: ANN Conclusion
initialized with random weights is trained from
scratch on the output boundary labels and the Speaker Error Rates . No separate training data is used.

spectral features to obtain latent features (LSF).

R dino. £ diccrimination ioved
- Second pass: The LSFs are used along with the ecording-specific discrimination Is achieve

« Sequence of recordings does not affect the

spectral features in the second pass of IB system. Table : Speaker Error Rate (SER) on different systems are mentioned. The feature fusing weights are mentioned in parentheses. Avg. £
. . o L _ performance.
denotes the average SER over all fusing weights combination. Best SER on both systems for each dataset is indicated in bold font.
TPIB-ITL « TPIB-ITL also works when only development data
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System Feature(s) R T-04Dev RT-04Eval RT-05Eval AMI-1 AMI in used in incremental learning phase.
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