

Skin Lesion Classification Using Hybrid deep Neural Networks

Mahbod A^{1,2}, Schaefer G³, Wang C⁴, Ecker R², Ellinger I¹

¹ Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria ² Department of Research and Development, TissueGnostics GmbH, Vienna, Austria ³Department of Computer Science, Loughborough University, U.K

⁴ Department of Biomedical Engineering and Health System, Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden

Introduction

- Skin Cancer is one of the most common cancer types worldwide
- A powerful non-invasive method for skin lesion classification is analysis of dermoscopic images
- Visual classification by experts is challenging, subjective and time consuming
- In this work, we propose a fully automatic approach based on deep convolutional neural networks to classify skin lesion images

Aim

Classifying skin lesion images to 3 classes, namely malignant melanoma (MM), seborrheic keratosis (SK) and benign nevi (BN).

Example images, adapted from the International Skin Imaging Collaboration (ISIC) [1]

Method

General workflow is shown below

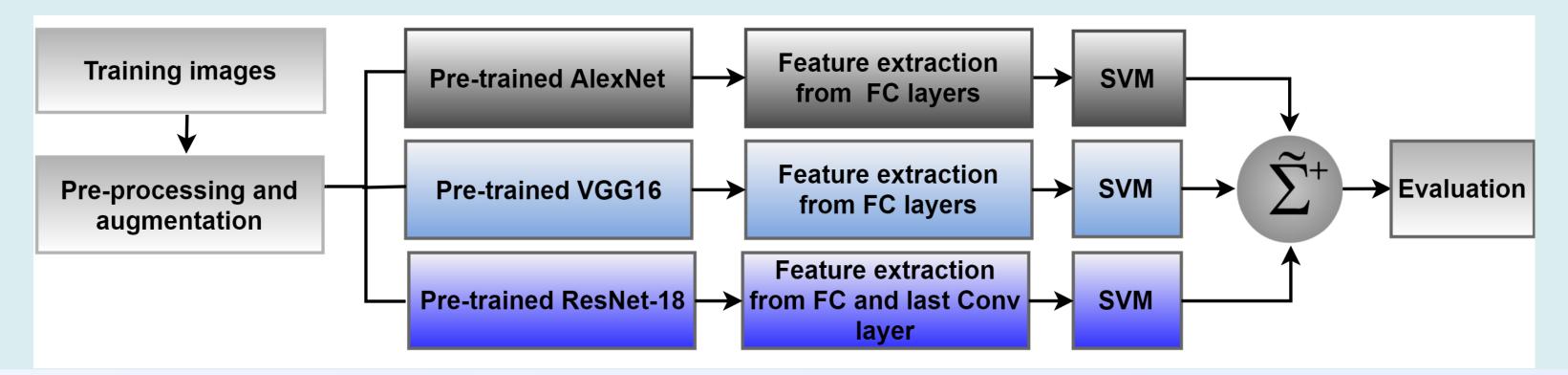
Datasets

- Subset of ISIC archive for training and validation data
 - □ Training Data: 2037 images including training, validation and test images of ISIC 2016 competition as well as training set of ISIC 2017 competition
 - □ Validation Data: 150 validation images from ISIC 2017 competition

Preprocessing

- ImageNet mean subtraction
- Resizing (224 x 224 and 227 x 227)
- Data augmentation by rotating (0, 90, 180 and 270 degree) and horizontal flipping (increase of training data by a factor of eight)

- Feature extraction from pre-trained deep models
 - Exploring feature extraction from various depth and merging
 - Last two fully connected (FC) layers of AlexNet [2] and VGG16 [3]
 - FC layer and last convolutional (Conv) layer of ResNet-18 [4]
- Multi-class non-linear support vector machine (SVM) as main classifier
- Fusion
 - Taking average over SVMs results
- Reporting results for two binary classification problems (defined in ISIC 2017)
 - MM versus all & SK versus all

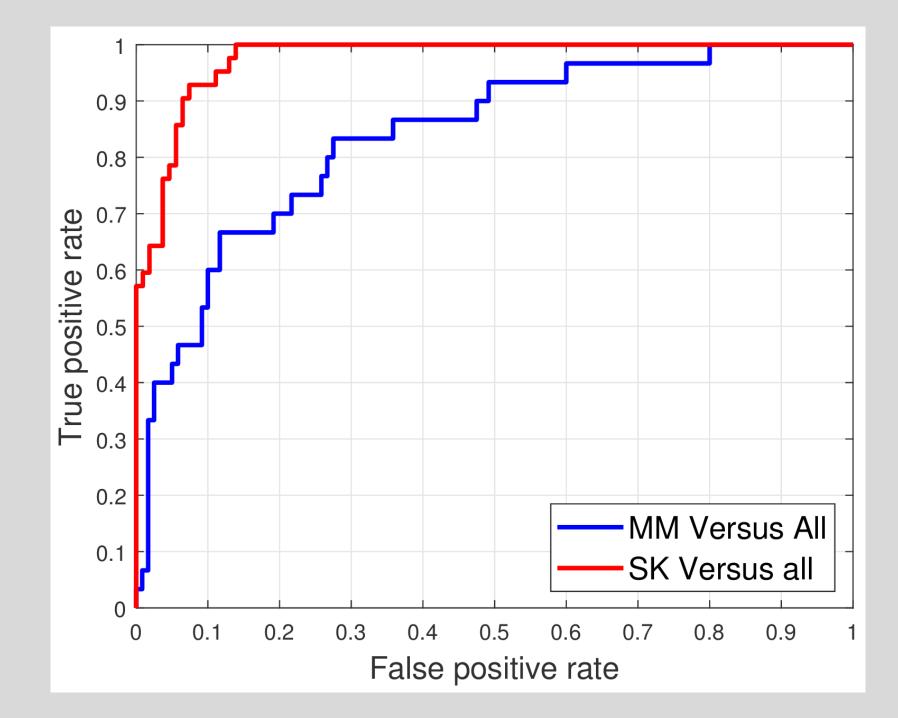


Results and Conclusion

Validation results based on AUC

Network	Feature layer	MM AUC (%)	SK AUC (%)	Avg. AUC (%)
AlexNet	last FC	80.67	94.95	87.81
AlexNet	all FC	82.81	96.65	89.73
VGG16	last FC	82.61	90.94	86.78
VGG16	all FC	82.06	95.46	88.76
ResNet-18	FC	81.00	91.93	86.47
ResNet-18	FC+ last conv.	82.81	94.22	88.51
AlexNet + VGG16 fusion	All FC	83.56	97.05	90.30
AlexNet + ResNet-18 fusion	All FC	83.53	97.05	90.29
VGG16 + ResNet-18 fusion	All FC	83.69	95.97	89.83
Fusion of all networks	All FC	83.83	97.55	90.69

Roc curves of best performing approach



Conclusion

A fully automatic method for dermoscopic skin lesion classification is proposed. It is based on feature extraction from various pre-trained deep models and delivers excellent classification performance for ISIC 2017 validation dataset.

References

Acknowledgement

[1] https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

[2] Krizhevsky et al: Imagenet classification with deep convolutional neural networks. NIPS, 2012

[3] Simonyan et al: Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014

[4] He et al: Deep Residual Learning for Image Recognition. ICCV, 2016

Funded by the Horizon 2020 Framework Programme of the European Union No. 675228 * 🛨