

Problem Definition and Contribution

Goal: Establish correct feature correspondences between two images of the similar or same scene.

Motivations:

- Existing parametric matching methods require a predefined transformation model and may fail in nonrigid situations, such as RANSAC and its varietas.
- Existing non-parametric matching methods require high computational cost and are easily affected by the noise, outlier and unknown image transformation.

Key Contributions:

- A **simple** but **efficient** method for feature matching.
- The convolution operation in our method may provide a guide to address the feature matching problem with **deep learning techniques** in future.
- The gridding strategy enables our method to achieve **linear time complexity**, which only requires dozens of milliseconds for thousands of matches.

Schematic Illustration

PFFM comprises three parts: putative matches griding, convolution operation and consistency checking, and it is implemented based on coarse-to-fine theory with an iterative manner. (Red:mismatches, Blue: correct matches)

Main idea: By assuming that the motion field of correct matches is smooth-and-slow, and considering the false matches as the outliers or noise, we formulate feature matching as a progressive filtering problem.

Progressive Filtering for Feature Matching

Xingyu Jiang¹, Jiayi Ma^{1,*}, Jun Chen² ¹Wuhan University, Wuhan, China. ²China University of Geosciences, Wuhan, China

Problem Formulation

• Convert the putative match space into motion space and griding:

$$S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \to S' = \{(\mathbf{x}_i, \mathbf{m}_i)\}_{i=1}^N,$$
 (1)
where S is putative match set, and the matched feature
points \mathbf{x}_i and \mathbf{y}_i are the pixel coordinates of the image
pair. $\mathbf{m}_i = \mathbf{y}_i - \mathbf{x}_i$ denotes the motion vector.

• Calculate the average motion vector in each cell:

$$\overline{\mathbf{m}}_{j,k} = \begin{cases} \frac{1}{|\mathcal{C}_{j,k}|} \sum_{i | \mathbf{x}_i \in \mathcal{C}_{j,k}} \mathbf{m}_i, & \text{if } |\mathcal{C}_{j,k}| > 0, \\ \mathbf{0}, & \text{if } |\mathcal{C}_{j,k}| = 0. \end{cases}$$

(2)where $C_{j,k}$ is the putative set in (j, k)-th cell. • Density estimation to deal with the isolated situation:

$$S(n) = \frac{C(n) - f^{D_0} N}{\sqrt{f^{D_0} (1 - f^{D_0}) N}},$$
(3)

where S(n) measures the density degree of cell n• Kernel convolutional filtering operation:

$$f(\otimes): \widetilde{\mathbf{M}} = \frac{(\mathbf{W} \cdot \overline{\mathbf{M}}) \otimes \kappa}{\mathbf{W} \otimes \kappa + \varepsilon}, \qquad (4)$$

where $\mathbf{M}_{j,k} = \widetilde{\mathbf{m}}_{j,k}$ denotes the *typical motion vector* of cell (j, k), W is a count matrix with $\mathbf{W}_{j,k} = |\mathcal{C}_{j,k}|$, and κ is a Gaussian kernel distance matrix.

• Check motion consistency and identify inlier set \mathcal{I}^* .

$$d_{i} = 1 - \exp\left\{-\frac{\|\mathbf{m}_{i} - \widetilde{\mathbf{m}}_{j,k}\|^{2}}{\beta^{2}}\right\}, \forall i, \mathbf{x}_{i} \in \mathcal{C}_{j,k}, \quad (5)$$
$$\mathcal{I}^{*} = \{i \mid d_{i} \leq \lambda\}. \quad (6)$$

Dataset:

Imag Inlier I Inlie

Qualitative results on real image pairs:

Quantitative results of *Precision* (P) and *Recall* (R) on real data:

Dat

RS(RSC Reti Chu Tsh Dog Gre Herzje Нои

Avera

Quantitative results of *F*-score (F) and *Run-time* (T) on real data:

Dat

Reti Chu Tsh Herzj Ног

Avera

Experiments & Results

Statistics of the introduced datasets												
ge Pair	r RS01 RS02 Retina Church Tshirt Dogcat Fox Graf Herzje								Herzjesu	House		
ype	low-overlapped	scale-changed	nonrigid	wide-baseline	nonrigid	nonrigid	nonrigid	rotation	wide-baseline	rotation		
Number r Rate	2152 68.48%	1982 43.09%	101 48.51%	126 56.35%	226 43.81%	113 82.30%	135 83.70%	442 85.52%	184 68.48%	1367 78.49%		

ta	RANSAC		ICF		GS		GMS		MR-RPM		LPM		PFFM (Ours)	
	P (%)	R(%)	P (%)	R(%)	P (%)	R(%)	P (%)	R(%)	P (%)	R(%)	P (%)	R(%)	P (%)	R(%)
01	100.0	100.0	12.74	100.0	100.0	72.37	96.43	94.74	10.59	100.0	81.04	95.61	100.0	100.0
)2	96.72	100.0	100.0	82.79	99.54	75.29	83.33	71.43	44.36	100.0	96.65	87.82	99.29	98.95
па	100.0	100.0	73.13	100.0	94.23	100.0	96.34	86.42	100.0	91.84	94.23	100.0	100.0	100.0
rch	95.16	83.10	93.75	63.38	95.83	97.18	86.76	83.10	100.0	80.28	82.50	92.96	98.59	98.59
irt	96.39	80.81	78.26	90.91	93.06	67.68	79.21	80.81	97.98	97.98	87.76	86.87	98.02	100.0
cat	100.0	97.85	92.19	63.44	97.70	91.40	93.18	88.17	100.0	100.0	97.89	100.0	98.94	100.0
x	98.10	91.15	98.57	61.06	100.0	90.27	96.49	97.35	97.12	89.38	94.87	98.23	100.0	100.0
af	99.74	100.0	100.0	14.02	99.66	77.51	98.07	93.92	100.0	96.30	98.14	97.88	99.21	99.47
iesu	99.09	86.51	98.55	53.97	99.07	84.13	87.07	80.16	98.29	91.27	96.88	98.41	99.21	100.0
lse	98.66	82.20	100.0	60.67	100.0	58.71	95.81	93.76	97.63	96.18	94.48	98.97	97.27	99.4 4
age	98.38	92.16	84.72	69.02	97.91	81.45	91.27	86.98	84.60	94.32	92.44	95.68	99.05	99.65

ta	RANSAC		ICF		GS		GMS		MR-RPM		LPM		PFFM (Ours)	
	F	T (ms)	F	T (ms)	F	T (ms)	F	T (ms)	F	T (ms)	F	T (ms)	F	T (ms)
01	1.00	1.12e4	0.23	4.83 <i>e</i> 3	0.84	3.50e3	0.96	2.04 <i>e</i> 0	0.19	5.15e2	0.88	2.62e1	1.00	7.77e1
02	0.98	1.96e2	0.91	1.66 <i>e</i> 1	0.86	9.67 <i>e</i> 1	0.77	1.13 e0	0.61	4.72e2	0.92	1.73e0	0.99	1.25e2
ina	1.00	3.65e2	0.84	2.67e3	0.97	6.88e3	0.91	1.70 e0	0.96	1.15e1	0.97	1.22e1	1.00	6.16 <i>e</i> 1
rch	0.89	1.49e2	0.76	1.93e1	0.97	1.00e2	0.85	0.86 e0	0.89	1.28e1	0.87	1.21e0	0.99	4.40e1
eirt	0.88	1.00e3	0.84	4.61 <i>e</i> 1	0.78	2.60e2	0.80	1.02 e0	0.98	1.89e1	0.87	5.47e0	0.99	6.35e1
cat	0.99	1.02e1	0.75	1.66 <i>e</i> 1	0.94	5.65e2	0.91	0.88e0	1.00	6.53e0	0.99	0.81 e0	0.99	4.83e1
\hat{x}	0.94	4.58e1	0.75	1.83e1	0.95	1.31e3	0.97	0.84e0	0.93	8.27e0	0.97	0.83 e0	1.00	6.16 <i>e</i> 1
af	1.00	1.45e1	0.25	1.86e2	0.87	2.42e3	0.96	1.23 e0	0.98	2.11e1	0.98	2.76e0	0.99	8.67 e1
jesu	0.92	1.19e2	0.70	3.07e1	0.91	2.32e2	0.83	1.87e0	0.95	1.49e1	0.98	1.13 e0	1.00	6.33e1
ISE	0.90	8.31 <i>e</i> 1	0.76	1.91 <i>e</i> 3	0.74	2.70e4	0.95	1.61 e0	0.97	2.23e2	0.97	8.96e0	0.98	1.49e2
age	0.95	1.32e3	0.68	9.74 <i>e</i> 2	0.88	4.24 <i>e</i> 3	0.89	1.32 e0	0.85	1.30e2	0.94	6.10e0	0.99	7.80 <i>e</i> 1

