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Introduction Solution algorithm

¢« The magnitude-response approximation of a . The unknown phase function ¢(®) is determined

Vo)

desired IIR digital filter is highly nonconvex with iteratively. To speed up the iterative algorithm, s
respect to the filter coefficients. the frequency-response error constraint in (2b) is
«  When no pole radius constraint is imposed, the replaced by an elliptic-error constraint described
problem can be transformed into a convex one as follows
for magnitude square function approximation. W () Re[j‘.jo(w,g,ﬂ,b)].,.%lm[,?ﬂ(m’g,,,)b)]|Sg‘a,eQ‘\
But resultant maximum pole radiuses may be
larger than the prescribed value. where
. Ref. [6] imposes a stability constraint and for- Eo(a),g,ﬂ,b) =e " H(e", g.a,b)- D(w)
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mulates the magnitude square function appro- is a transformed frequency-response error and
ximation as a semi-definite programming, resul- a y-resp

ting in optimal filters with guaranteed maximum =1 '.s an .algonthrr.\ parameter.. o

pole radius. +  The iterative algorithm for solving the minimax
magnitude-response approximation problem (1)
is presented as Algorithm 1 below.
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Fig. 1 Convergence of &, by the proposed Algorithm 1 in the first

two designs of Example |

The iirlpnormc() function in Matlab also allows
a pole-radius constraint. It minimizes the L-
norm of the magnitude-response approximation Algorithm 1
error subject to the pole-radius constraint.

This paper converts the pole-radius constrain-
ed magnitude-response approximation into an
approximation of the desired magnitude res-
ponse and an accompanied phase response.

—design by propesed method
-~ design by mathod of (6]
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Step 1. Given an initial phase function ¢(®), and a,=0. Let
k=0.

Step 2. Solve for a,,, and b, the following nonconvex
minimax complex approximation subproblem
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. The accompanied phase response is iteratively (&40t oDp0,0,. )= argmin g, (3a) %1 0z 03 04 05 06 07 08 08 1
updated until a solution to the original magni- gasSprbs Fie 2 Magniud fﬂ”[ fliers with nole
. . . . R jm < 2. agnitude responses o he two nilters wilh pole/zero
tude approximation problem s obtained. st W(w)|H(e ,g.rr.b)lfé', W, (3b) radivses smaller than 0,02

P . W (@[ReLE, (@g.ab)+3Im(E, (g ’"’b)]lsa“”e Q,.Go) . Example 2. Order-12 low-pass filters with pass-
band [0,0.5n] and stopband [0.6x,7]. W(w) = 1.0
rOblem form u Iatlon Step 3. Compute the phase response @,.,(@) of the filter in bOtL the gllssband F;nd St(pr(:Tltn:;]. ()

«  Pole-radius constrained magnitude minimax He.gu s Bun).
g Step 4. If some stop condition is satisfied, terminate. Other-
design:

Method Proposed ellip() Proposed iirlpnormc

wise, let £ = k+1 and go back to Step 2. R,(dB) 0.00116 000116 0.03125 0.04532
min max /¥ (@)|E(e.g.0.b) (1) R(dB) 83525 83525 54914 51.464
«  To solve the nonconvex minimax problem (3), the Fma 09781 0.9781 0.9377  0.94

H(z g, a,b) =g B(z, b) / Az, a) is transfer func- Gauss-Newton strategy is applied. That is, let

tion of the filter, a and b are the filter's denomi- w _ o i "
nator and numerator coefficient vectors; Hie *x):IH[(‘] o ))+’gh,'(';.2!x)/a\,'ﬂ;:;(()] s j:
. S(p)= RY all zeros of A(z.a) lie inside a circle is where x=[g.a’.b7]". » ; ™
(p)=qasR7| o dius p centered at the origin «  To guarantee the stability, the GPR-based cons- H
o o . traint is imposed, i.e., g 8op 0 0i 0z 03 04 0 ,
the filter’s stability domain; 4 _100 ‘
. . 3 ~i6,(@) i@ 2 ——proposed 1st design with p=0.999
. D(w) is the desired magnltude response; —Re[e™ A(pe'”,a)]<0, wel0, n] % 120 design by ellip() function ¢ 1y
i H : . . ~-=--design by iilpnormc() with p=0.94 i ' ‘»“
. W(w) > 0 is a weight function; where 6,(w) is the phase of A(pel“,a(?)). = -140 pmpgose:zn: desugn?wnm :=u.94 Y
+  Q=0Qis asubset of [0, n] with Q, and Qg «  Concrete algorithm for problem (3) is described in : o o o o3 8|
being the passband and stopband. Algorithm 2 of the paper. ) © in unit of = )
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