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1) Utilize attention mechanism to embed the swesome. (han) P Sooakern i softmax ] stage 1n dyadic conversations.
: U eaker c
transactional nformation into current utterance . o Current %» — ®—» Q00 |
representation. 4 time . sidirectional GRU ® Our method shows outstanding performance

with unweighted accuracy of 66.3%, and
outperforms the best known traditional and
state-of-the-art methods.

2) Capture the affective transition from the target
speaker and affective 1nfluence {from the
interlocutor to better characterize a target speaker’s
current emotion state.

[Interactive attention ] : The defined score function iteratively loops through every
timestep of current utterance’s hidden states h, based on the
contextual representations of h and h..

utterance modeling: ; N sty o | ) [M}\ 5 representations learning and final prediction

BiGRU+ATT: A BiGRU network with the classical attention (ATT) trained only
using current utterances.

BiGRU+IAA: A BiGRU network with IAA, but the final prediction only depends on
current utterance’s representation.

RandIAAN: IAAN trained with randomly selected utterances in the dialog as a

B Feature: Pitch, Intensity, MFCC (A, AA)
B Transactional Context:
» Previous utterance of the current speaker U &

previous utterance of the other speaker U .
. : : : : ’ Speech and Signal Processing (ICASSP), 2017 IEEE International
> Each training data point is defined includes a triple |_tansactonal frame. Conference on . IEEE, 2017, pp. 2227-2231.

of (U, U, U)) with the label of U.. Analysis of Different Transactional Contexts
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