

# **AN INTERACTION-AWARE ATTENTION NETWORK FOR SPEECH EMOTION RECOGNITION IN SPOKEN DIALOGS**

## Introduction

- A novel attention-based GRU architecture that emotions by taking transactional recognize information into account.
- Our proposed framework extends beyond the conventional framework that often relies on single utterance modeling:

1) Utilize attention mechanism to embed the transactional information into current utterance representation.

2) Capture the affective transition from the target speaker and affective influence from the interlocutor to better characterize a target speaker's current emotion state.

## Methodology

- **Dataset:** IEMOCAP Database
- > A benchmark dataset that is widely used in speech emotion recognition.
- > 10 speakers, 5 sessions, consists of multiple conversational scenarios between two actors.
- > Label: Anger, Happiness, Neutrality, Sadness
- **Feature:** Pitch, Intensity, MFCC ( $\Delta$ ,  $\Delta\Delta$ ) **Transactional Context:**
- $\triangleright$  Previous utterance of the current speaker U<sub>p</sub> & previous utterance of the other speaker  $U_r$ .
- > Each training data point is defined includes a triple of  $(U_c, U_p, U_r)$  with the label of  $U_c$ .
- Interaction-aware Attention (IAA):
- > Score function:  $e(h_{it}, h_p, h_r) = v^T \tanh(W_c h_{it} + W_p h_p + W_r h_r + b_a)$
- > Attentive weight:  $\alpha_t = \frac{\exp(e(h_{it}, h_p, h_r))}{\sum_{t=1}^T \exp(e(h_{it}, h_p, h_r))}$
- $\succ$  Context vector:  $h_c = \sum_{t=1}^T \alpha_t h_{it}$

## Sung-Lin Yeh, Yun-Shao Lin, Chi-Chun Lee

Department of Electrical Engineering, National Tsing Hua University, Taiwan MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan



27.1

47.1

25.8

Case 1

Case 2

Case 3

72.3

58.2

42.0

76.0

64.3

53.6

69.2

60.2

42.4

|          | I       | WA(%) | UA(%) |
|----------|---------|-------|-------|
| utrality | Sadness |       |       |
| -        | -       | 60.8  | 60.9  |
| -        | -       | 63.5  | 58.8  |
| -        | -       | 65.3  | -     |
| -        | -       | 61.8  | 62.7  |
| 48.4     | 71.6    | 57.6  | 58.4  |
| 51.7     | 73.0    | 60.7  | 62.9  |
| 53.5     | 73.7    | 62.0  | 63.4  |
| 53.1     | 74.6    | 64.7  | 66.3  |

| N<br>UA(%)<br>74.4<br>66.6 | <b>Case 1:</b> $U_c$ shares the same<br>emotion as $U_p$ and $U_r$ .<br><b>Case 2:</b> $U_c$ shares the same<br>emotion with one of $U_p$ and $U_r$ . |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66.6                       | <b>Case 3</b> : $U_c$ has emotion                                                                                                                     |
| 54.8                       | different from one of $U_p$ and $U_r$ .                                                                                                               |
|                            |                                                                                                                                                       |

- stage in dyadic conversations.
- state-of-the-art methods.

[1] S. Mirsamadi, E. Barsoum, and C. Zhang, "Automatic speech emotion recognition using recurrent neural networks with local attention," in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on . IEEE, 2017, pp. 2227–2231.

[2] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," arXiv preprint arXiv:1409.0473, 2014.

[3] D. Hazarika, S. Poria, A. Zadeh, E. Cambria, L.-P.Morency, and R.Zimmermann, "Conversational memory network for emotion recognition in dyadic dialogue videos," in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), vol. 1, 2018, pp. 2122–2132.





### Conclusion

• Our interaction-aware attention allows more compact current utterance representation compared with classical attention mechanism.

• The contextual information is effectively incorporated both at current utterances representations learning and final prediction

• Our method shows outstanding performance with unweighted accuracy of 66.3%, and outperforms the best known traditional and

## Future Work

• Validate the robustness and generality of our IAAN in other conversational dataset.

• We observe that transactional information can be misleading; thus, developing a strategy that is able to consider the strength of influence from emotional contexts is of importance.

## References