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AbSt raCt in recent years, nonnegative matrix factorization (NMF) with volume reg-

ularization has been shown to be a powerful identifiable model; for example for hyperspectral
unmixing, document classification, community detection and hidden Markov models. We
show that minimum-volume NMF (min-vol NMF) can also be used when the basis matrix is
rank deficient, which is a reasonable scenario for some real-world NMF problems (e.g., for
unmixing multispectral images). We propose an alternating fast projected gradient method
for minvol NMF and illustrate its use on rank-deficient NMF problems; namely a synthetic
data set and a multispectral image.
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where A is the r-dimensional unit simplex, \ is a parameter, vol(W) = logdet(W!W +61)
is a function that measures the volume of the columns of V.

e Meaning : look for 1} with minimum volume to make the solution unique

e Under conditions on X = W H, this model recovers the true underlying (W, H) that
generated X. [2, 3, 4]

Rank-deficient case

e A key assumption in min-vol NMF: the basis matrix W is full rank (rank(W) = r).

e It may happen that W is not full column rank; for example when rank(X) # rank, (X).
Example:
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X = , rank(X) = 3 < rank, (X)) = 4. (2)

The columns of X are the vertices of a square in a 2-dimensional subspace; see Fig. 2|
This could also happen for example in multispectral imaging : #materials in the image >
#spectral bands (i.e. » > m so rank(W) < m < r).

Focus of this work : the rank-deficient scenario, that is, rank(W) < r.

Min-vol NMF in the rank-deficient case

min-vol NMF model min
W>0,H(:,j)EA" V]

Choice of the volume regularizer
e Common volume functions are det(WX W) and logdet(W!W + 61).

o vol(W) = logdet(WTW + 6I). Note /det(WTW)/r! is the vol of the convex hull of
the col. of W and the origin.

o As det(WIW) = II'_,07(W), the log term weight down large o;.

o If W is rank deficient, some o;(1W) = 0 so det(W?W) = 0. So det(W!W) cannot
distinguish between different rank-deficient sol.

o As logdet(W!W +61) = > log(c7(W) + 6), if W has one/more o; equal to zero,
this measure still makes sense: among two rank-deficient sol. belonging to the same low-

dimensional subspace, minimizing logdet(WW? W + §1) will favor a solution whose convex
hull has a smaller volume within that subspace as decreasing the non-zero o;(W!1 W +61)

will decrease logdet(W W 4+ 61).

| X — WH||5 + Mogdet(W W +6I)  (3)

Choice of o

o logdet(W!TW + 61) is a non-convex surro- . | |
gate for rank (V). L7

e |t is sharper than the nuclear norm for 0 /-", ..........
sufficiently small. 1 WW

e So if one wants to promote rank-deficient |/ =7 ’ - -
solutions, 0 should be small, say 0 < 0.1. 0.5 e :Zz Eﬁj‘;%) |

e ¢ should not be too small : (1) WW?! 4+ 61 7 ’ og (1=10%
might be badly conditioned which makes og" s ‘; g )1.5

the optimization problem harder to solve,
(2) gives too much importance to zero sin-  Figure 1:
gular values which might not be desirable.

Choice of )\

The choice of ¢ will influence the choice of A : the smaller ¢, the larger |logdet(d)|, to
balance the two terms in the objective (3)), A should be smaller. For practical implementation,
we initialize W) = X (:, K) where K is computed with the successive nonnegative projection

algorithm (SNPA) that can handle the rank-deficient separable NMF problem. Note SNPA
also provides the matrix H'”) so as to minimize || X — WV H |12 while H)(:, j) € A
for all 5. Finally, we will ch%c))se(O> :
N [ OV
[ logdet(W O WO 4 61
where we recommend to choose A between 1 and 103 depending on the noise level (the
noisier the input matrix, the larger A should be).

og(z*+4d)—log b

Tlog(17-8)—Tog 0 ¢1 norm and £y norm.

AlgO”th Im fOr M | n—VOl N M F Alternating minimization approach.

e On update H, use projected fast gradient method (PFGM)

e On update W, use PFGM applied on an strongly convex upper approximation of the
objective function;

n 1 B
(W) = || X = WHI|T+ Mogdet(W'W +61) <2 (§wiTAwi - CZ-TwZ) +b=0W),

1=1

where Y = (Z'Z 4+ 6I)"" and A = HH" + AY are positive definite for 6, A > 0,
C = XH', and b is a constant independent of . Note £(WW) = £(W) for Z = W.

Minimizing the upper bound ¢(T¥) of £(TV) requires to solve m independent strongly convex
optimization problems with Hessian matrix A.

e PFGM has a linear rate of convergence 1 — v k~! where & is the condition number of A.
e subproblem on H is not strongly cvx when 1V is rank deficient; PFGM converges sublinearly

e when IV is rank deficient; 2 < \.c(A) < ||H||3+ 2 and as smaller § gives larger the
conditioning of A hence the slower will be the PFGM.

Min-vol NMF using alternating PFGM
e Initialize (W, H) using SNPA, let A = A=l
e Fork=12,...
~Let A= HH' + \W!W +6I)""and C = XH".
— Perform a few steps of PFGM on the problem miny( (U U, A)—(U, C)), with initial-
ization U = W

— Perform a few steps of PFGM on problem ming . jjearv; | X — WHH%

Numerical Experiments

o Data points
Synthetic data set. X = WH ¢ R con- O Tmew
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times referred to as the purity index). As observed on

Fig. , proposed algorithm is able to perfectly recover Figure 2: Synthetic data set and recovery.
the true col. of W (Only the first three entries of each four-

dimensional vector are displayed.)

Fig. |3 illustrates the same experiment where noise

is added to X = max(0, WH + N) where N = ¢ =
randn(m,n) in Matlab notation (i.i.d. Gaussian distri-
bution of mean zero and standard deviation ¢€). Note
that the average of the entries of X is 0.5 (each col.
is a linear combination of the col. of W, with weights
summing to one). Fig. 3| displays the average over 20
randomly generated matrices X of the relative error
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dW, W) = T ([ - where W is the solution com- Figure 3: Evolution of the recovery of the

puted by Alg. depending on the noise level €. This true W depending on the noise N = ¢
illustrates that min-vol NMF is robust against noise rand(m,n) using Alg. (A =0.01, 6 = 0.1,

since the d(W, W) is smaller than 1% for e < 1%. maxiter = 100).

Multispectral image. San Diego airport is a hyper- /A
spectral image (HSI) : 158 clean bands, 400 x 400
pixels for each spectral image. Mainly 3 types of mate-
rials: road surfaces, roofs and vegetation. The image

can be well approximated using r=8. As we are inter-

ested in rank(W) < r, we pick m=b spectral band > i i,
using successive projection algorithm (Gram-Schmidt i ? A y
with column pivoting) applied on X! This provides 1% -*,g@ " <1

bands that are representative and

. Here we used A\=0.1
and 1000 iterations. From the initial solution provided
by SNPA, min-vol NMF reduce error || X — W H||r
by a factor of 11.7 while term logdet(W!IW + 41)
only increases by a factor of 1.06. Final relative error

X WH|:
e~ 0-2%

Figure 4: Abundance maps extract by min-
vol NMF using only 5 bands of San Diego
airport HSI. From left to right, top to bot-
tom: vegetation, 3 types of roof tops, 4
types of road surfaces.

Conclusion

e min-vol NMF can be used meaningfully for rank-deficient NMF's
e We proposed an efficient algorithm to tackle this problem
e Open questions

— Under which conditions can we prove the identifiability of min-vol NMF in the rank-
deficient case ?

— Can we prove robustness to noise of such techniques? (The question is also open for
the full-rank case.)

— Can we design faster and more robust algorithms? And algorithms taking advantage of
the fact that the solution is rank-deficient?



