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Abstract In recent years, nonnegative matrix factorization (NMF) with volume reg-

ularization has been shown to be a powerful identifiable model; for example for hyperspectral
unmixing, document classification, community detection and hidden Markov models. We
show that minimum-volume NMF (min-vol NMF) can also be used when the basis matrix is
rank deficient, which is a reasonable scenario for some real-world NMF problems (e.g., for
unmixing multispectral images). We propose an alternating fast projected gradient method
for minvol NMF and illustrate its use on rank-deficient NMF problems; namely a synthetic
data set and a multispectral image.

Min-vol NMF Given X ∈ Rm×n
+ and rank r,

[W ∈ Rm×r
+ , H ∈ Rr×n

+ ] = argmin
W≥0,H(:,j)∈∆r ∀j

||X −WH||2F + λ vol(W ), (1)

where ∆r is the r-dimensional unit simplex, λ is a parameter, vol(W ) = logdet(W TW +δI)
is a function that measures the volume of the columns of W .

• Meaning : look for W with minimum volume to make the solution unique

• Under conditions on X = WH, this model recovers the true underlying (W,H) that
generated X . [2, 3, 4]

Rank-deficient case
• A key assumption in min-vol NMF: the basis matrix W is full rank (rank(W ) = r).

• It may happen that W is not full column rank; for example when rank(X) 6= rank+(X).
Example:

X =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

 , rank(X) = 3 < rank+(X) = 4. (2)

The columns of X are the vertices of a square in a 2-dimensional subspace; see Fig. 2.
This could also happen for example in multispectral imaging : #materials in the image >
#spectral bands (i.e. r > m so rank(W ) ≤ m < r).

Focus of this work : the rank-deficient scenario, that is, rank(W ) < r.

Min-vol NMF in the rank-deficient case
min-vol NMF model min

W≥0,H(:,j)∈∆r ∀j
||X −WH||2F + λ logdet(W TW + δI) (3)

Choice of the volume regularizer

• Common volume functions are det(W TW ) and logdet(W TW + δI).

• vol(W ) = logdet(W TW + δI). Note
√

det(W TW )/r! is the vol of the convex hull of
the col. of W and the origin.

• As det(W TW ) = Πr
i=1σ

2
i (W ), the log term weight down large σi.

• If W is rank deficient, some σi(W ) = 0 so det(W TW ) = 0. So det(W TW ) cannot
distinguish between different rank-deficient sol.

• As logdet(W TW + δI) =
∑r

i=1 log(σ2
i (W ) + δ), if W has one/more σi equal to zero,

this measure still makes sense: among two rank-deficient sol. belonging to the same low-
dimensional subspace, minimizing logdet(W TW + δI) will favor a solution whose convex
hull has a smaller volume within that subspace as decreasing the non-zero σi(W

TW + δI)
will decrease logdet(W TW + δI).

Choice of δ
• logdet(W TW + δI) is a non-convex surro-

gate for rank(W ).
• It is sharper than the nuclear norm for δ

sufficiently small.
• So if one wants to promote rank-deficient

solutions, δ should be small, say δ ≤ 0.1.
• δ should not be too small : (1) WW T + δI

might be badly conditioned which makes
the optimization problem harder to solve,
(2) gives too much importance to zero sin-
gular values which might not be desirable.

Figure 1:
log(x2+δ)−log δ
log(1+δ)−log δ

, `1 norm and `0 norm.

Choice of λ
The choice of δ will influence the choice of λ : the smaller δ, the larger | logdet(δ)|, to
balance the two terms in the objective (3), λ should be smaller. For practical implementation,
we initialize W (0) = X(:,K) where K is computed with the successive nonnegative projection
algorithm (SNPA) that can handle the rank-deficient separable NMF problem. Note SNPA
also provides the matrix H (0) so as to minimize ||X −W (0)H (0)||2F while H (0)(:, j) ∈ ∆r

for all j. Finally, we will choose

λ = λ̃
||X −W (0)H (0)||2F

| logdet(W (0)TW (0) + δI)|
,

where we recommend to choose λ̃ between 1 and 10−3 depending on the noise level (the
noisier the input matrix, the larger λ should be).

Algorithm for min-vol NMF Alternating minimization approach.

• On update H, use projected fast gradient method (PFGM)

• On update W , use PFGM applied on an strongly convex upper approximation of the
objective function;

`(W ) = ||X −WH||2F + λ logdet(W TW + δI) ≤ 2

n∑
i=1

(
1

2
wT
i Awi − cTi wi

)
+ b = ¯̀(W ),

where Y = (ZTZ + δI)−1 and A = HHT + λY are positive definite for δ, λ > 0,
C = XHT , and b is a constant independent of W . Note ¯̀(W ) = `(W ) for Z = W .

Minimizing the upper bound ¯̀(W ) of `(W ) requires to solve m independent strongly convex
optimization problems with Hessian matrix A.

• PFGM has a linear rate of convergence 1−
√
κ−1 where κ is the condition number of A.

• subproblem on H is not strongly cvx when W is rank deficient; PFGM converges sublinearly

• when W is rank deficient; λ
δ ≤ λmax(A) ≤ ||H||22 + λ

δ and as smaller δ gives larger the
conditioning of A hence the slower will be the PFGM.

Min-vol NMF using alternating PFGM

• Initialize (W,H) using SNPA, let λ = λ̃ ||X−WH||2F
logdet(W TW+δI).

• For k = 1, 2, . . .

– Let A = HHT + λ(W TW + δI)−1 and C = XHT .

– Perform a few steps of PFGM on the problem minU≥0
1
2〈U

TU,A〉−〈U,C〉, with initial-
ization U = W

– Perform a few steps of PFGM on problem minH(:,j)∈∆r ∀j ||X −WH||2F

Numerical Experiments
Synthetic data set. X = WH ∈ R4×500 con-
structed with W as matrix from (2) so rank(W ) =
3 < r = 4, and each col. of H is distributed using
the Dirichlet distribution of parameter (0.1, . . . , 0.1).
Each col. of H with an entry larger 0.8 is resampled as
long as this condition does not hold. This guarantees
that no data point is close to a col. of W (this is some-
times referred to as the purity index). As observed on
Fig. 2, proposed algorithm is able to perfectly recover
the true col. of W .

Figure 2: Synthetic data set and recovery.
(Only the first three entries of each four-
dimensional vector are displayed.)

Fig. 3 illustrates the same experiment where noise
is added to X = max(0,WH + N) where N = ε
randn(m,n) in Matlab notation (i.i.d. Gaussian distri-
bution of mean zero and standard deviation ε). Note
that the average of the entries of X is 0.5 (each col.
is a linear combination of the col. of W , with weights
summing to one). Fig. 3 displays the average over 20
randomly generated matrices X of the relative error

d(W, W̃ ) = ||W−W̃ ||F
||W ||F where W̃ is the solution com-

puted by Alg. depending on the noise level ε. This
illustrates that min-vol NMF is robust against noise
since the d(W, W̃ ) is smaller than 1% for ε ≤ 1%.

Figure 3: Evolution of the recovery of the
true W depending on the noise N = ε
rand(m,n) using Alg. (λ̃ = 0.01, δ = 0.1,
maxiter = 100).

Multispectral image. San Diego airport is a hyper-
spectral image (HSI) : 158 clean bands, 400 × 400
pixels for each spectral image. Mainly 3 types of mate-
rials: road surfaces, roofs and vegetation. The image
can be well approximated using r=8. As we are inter-
ested in rank(W ) < r, we pick m=5 spectral band
using successive projection algorithm (Gram-Schmidt
with column pivoting) applied on XT . This provides
bands that are representative and we are factoring
5-by-160000 matrix using a r=8. Here we used λ̃=0.1
and 1000 iterations. From the initial solution provided
by SNPA, min-vol NMF reduce error ||X −WH||F
by a factor of 11.7 while term logdet(W TW + δI)
only increases by a factor of 1.06. Final relative error
||X−WH||F
||X||F = 0.2%.

Figure 4: Abundance maps extract by min-
vol NMF using only 5 bands of San Diego
airport HSI. From left to right, top to bot-
tom: vegetation, 3 types of roof tops, 4
types of road surfaces.

Conclusion
• min-vol NMF can be used meaningfully for rank-deficient NMF’s

• We proposed an efficient algorithm to tackle this problem

• Open questions

– Under which conditions can we prove the identifiability of min-vol NMF in the rank-
deficient case ?

– Can we prove robustness to noise of such techniques? (The question is also open for
the full-rank case.)

– Can we design faster and more robust algorithms? And algorithms taking advantage of
the fact that the solution is rank-deficient?


