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Introduction

Recently, by employing the stacked extreme learning machine (ELM) based autoencoders (ELM-AE)
and sparse AEs (SAE), multilayer ELM (ML-ELM) and hierarchical ELM (H-ELM) has been
developed. Compared to the conventional stacked AEs, the ML-ELM and H-ELM usually achieve
better generalization performance with a significantly reduced training time.

However, ML-ELM and H-ELM suffer the following deficiencies:

® The extracted features in ML-ELM tend to be dense and may lead to indistinctive representation.

® The simply stacked AEs in ML-ELM may not well exploit the advantage of ELM.

® The SAE fails to provide analytical solution leading to long training time for big data.

® The ¢;-norm based SAE may suffer the overfitting problem.

To address these deficiencies, we propose an enhanced H-ELM (EH-ELM) with a novel random

sparse matrix based AE (SMA\) in this paper. The contributions are summarized as follows:

» Utilizing the random sparse matrix, the sparse features can be obtained.

» Benefiting from using random sparse matrix, the £,-norm regularized optimization is formulated
in the SMA. The resultant solution can be analytically calculated.

> By virtue of the SMA, the proposed EH-ELM learns faster than ML-ELM and H-ELM.

Proposed SMA

A random matrix projection has been developed based on the Johnson-Lindenstrauss (JL) lemma,
which states that after projection, the distance of any pair of two vectors can be preserved within an
arbitrarily small tolerance. Based on that, we propose two new random sparse matrices for generation
of the hidden-layer parameters in ELM as follows:
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where U(-)and N(-)are the Uniform and Gaussian distributions, respectively. By virtue of the above
described sparse random weight matrix, we proposed a random sparse matrix based AE (SMA). The
SMA generates the hidden-layer parameters Wy, and b,, according to (1) and (2) and solves the
output-layer weight B, by the following #,-regularized nonlinear ELM-AE
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where 1 is an all-one vector of dimension N and g(-) is the activation function. The solution to
problem (3) can be obtained as

By = Hf G+ Hy HI)TXT if N <L,
B = G+ HEH) THEXT if N2> L.

Here, N is the number of samples and L is the number of hidden nodes. Then, the encoded result
can be derived as
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Y = g(BuX). (6)
Fig. 1 shows the architecture of SMA.
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Fig. 1 The architecture of SMA

Proposed EH-ELM

By incorporating the H-ELM learning framework with the SMA described, an EH-ELM is developed.

Fig. 2 shows the architecture of EH-ELM which consists of a feature extraction with stacked SMAs
and a classification layers with ELM. Assume K SMA layers are used and Y*~Dis the output of
(k — 1)-th layer with Y(®) = X, the output Y®)of the k-th layer is

Y = g(B;;()Y("'l)),k =1,--,K, @
where Bf‘;‘)is the output weight of the k-th SMA. The supervised ELM classifier in the last layer is
trained as
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where W and b are the orthogonal random input weights and bias, T is the desired output matrix of
training data. The output weight B in the last hidden layer is computed by

B=HTC+HH)IT if N<L,
B=(G+HHH Tif N>L,
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Fig. 2 The architecture of EH-ELM

Experiments

The first experiment is conducted on the real-world NORB dataset to compare the sparsity of the
proposed SMA and the existing #,-norm based SAE. Both the Uniform distribution and the Gaussian
distribution are tested to generate the random sparse matrix. The corresponding SMAs are denoted as

SMAUV and SMA® | respectively. The criterion ms = (y/card(B) — lIBll1/lIBIl2)/(/card(B) — 1)
(card(B) is the number of elements in B) is employed for the sparsity evaluation of the output
weight. Different number of hidden nodes of the AE ranging from 100 to 3000 are tested. The curves
of sparsity in Fig. 3 show that, the proposed SMA with both random sparse matrix generating
methods is effective in sparse encoding.
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Fig. 3 Sparsity comparison among different sparse AEs.

In the following experiments, a comparison among ML-ELM, H-ELM and the proposed EH-ELM is
made. Both the random sparse matrices generated by the Uniform and Gaussian distributions (denoted

as EH-ELMV and EH-ELM® ) are tested. Experiments are conducted on 12 high-dimensional and 11
low-dimensional benchmark classification datasets, as well as the MNIST and NORB datasets.

Tables 2 and 3 show the recognition rates and training time of ML-ELM, H-ELM and the proposed
EH-ELM. As highlighted in boldface, EH-ELM obtains higher recognition rate with lower training
time than ML-ELM and H-ELM.

Experiments on the datasets, MNIST and NORB, are also carried out to verify the superiority of EH-
ELM. Table 4 shows the experimental results. It is obvious that EH-ELM wins the best recognition rate
and also learns faster than ML-ELM and H-ELM.

Table 1. Recognition rates (%) and training time (s) comparisons on high-dimensional datasets

Dataset ML-ELM [1] H-ELM [2] EH-ELM" EH-ELM“
n i rain ime ate rain time ale
ALLAML | 89.66 21.33 83.45 16.45 96.55 10.87 96.55
cene 82.5 21.46 80.5 18.80 85.5 11.32 85.5
Carcinom 91.3 21.40 94.78 18.18 95.36 11.09 95.07
COIL20 99.59 22383 97.38 12.33 99.66 11.29 98.97
giselte 96.27 3293 95.72 2111 96.66 19.49 96.89
GLIOMA 62.86 21 62.86 14.27 7143 10.43 66.67
HistALL 88.1 30.74 89.45 19.61 93.18 17.41 93.25
ORL64 89.88 21.10 96.88 14.09 97.5 10.69 96.75
PCMAC 7413 23.79 83.55 14.79 84.94 12.59 84.07
TOXI71 74.2 20.84 81.16 15.23 82.61 10.68 82.61
Yale6d 78.33 20.70 87.33 13.98 88.33 10.49 88.33
YaleB32 93.66 24.03 84.11 12.99 98.04 12.26 98.06

Table 2. Recognition rates (%) and training time (s) comparisons on low-dimensional datasets

Dataset | MLELMO] || HELME2] || EH-ELMY || EH-ELM®
| Rate Train time || Rate Train time || Rate Train time || Rate
BreastTissue 61.29 2022 5161 10.59 §0.65 9.96 7319
bupa 6690 0,005 6538 0.003 7159 0.003 72.28
featall 98.65 3362 98.07 1247 99.15 1172 901
Cardiotocography | 8433 2475 ®8.85 12,60 913 12.26 9031
diabetes? 64.06 0.05 69.45 0.02 7031 0.02 674
randomiacesdar | 94.88 3581 918 13.58 9592 13.04 988
Diabetic 68.75 0.12 66.72 0.06 7241 007 7316
randomAR 78.35 25.33 8445 13.31 89.5 12.72 89.93
magic 8585 0.33 w28 0.19 §5.08 0.20 §6.17
peaAR %6.29 HES 9743 42 9249 1092 933
wine 97.69 3031 G 10.53 100 10.04 9572
Table 3. Comparisons on MNIST and NORB datasets
Dawset | ML-ELM[1] || H-ELM [2] I EH-ELM"” || EH-ELM®
| Rate Traintime_ || Rate Traintime [| Rate Traintime [ Rate
MNIST | 99.00 28171 0899 101,39 99.01 7823 99,00
NORB | 88.27 251.59 90.63 165.72 91.80 150.34 91.77
Conclusions

> Instead of using the #;-norm optimization based sparse AE, a novel random sparse matrix based
AE (SMA) has been proposed in this paper.

» The proposed SMA is able to provide analytical solutions for the sparse feature encoding.

» An enhanced hierarchical extreme learning machine algorithm (EH-ELM) has been developed by
stacking the SMAs.

» Experimental results have been presented to verify the superiorities of the proposed EH-ELM.




