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Motivation Differential Privacy (DP) Privacy Analysis

Goal: measure linear relationship among variables e Analyze Gauss (AG) algorithm: input perturbation on 2nd-moment matrix |2}

— can use correfation - - e DP is post-processing invariant = computation of U and V is (¢, )-DP
Challenges: data — privacy-sensitive and distributed

now to guarantee privacy?
now to measure the best correlation metric?
now to do it in distributed setting? Ty —— (b} capeCCA

@ Central aggregator @ Local site Y& Noise generator U of Wisc. X-ray Microbeam (XRMB) Dataset — view 1: speech; view 2: jaw movement

Definition: Algorithm A(ID) taking values in a set T provides fMRI4-EEG Dataset — view 1: tMRI; view 2: EEG
(¢, 0)-differential privacy [2] if Clustering performance on XRMB — CHIndex

P(A(D) € §) < P(A(.D)-’) € S) + ¢ for all measurable S C T Estimation of correlation on fMRI4+-EEG — errg,.
and all neighboring data sets ID and D’ differing in a single entry.

A conventional scheme: _ X104;__T“f:f _3:)“*‘ x10*  XRMB (e =0.1) 5 x10° XRMB (p = 30, ¢ = 0.2)
_ T
e Compute Z, = | X Y/)| and C,=+-7Z,Z, Performance

CCA finds subspaces for different “views” of data [1] e Send C, = C, + E, to aggregator, where Variation on

e Projection/clustering do not satisfy DP = can be modified at the cost of utility

Simulation Results
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® Varlance Of the estlmator ’7' = S ~ fMRI+EEG (N = 1000) fMRI+EEG (c = 0.5) 0o TMRI+EEG (N = 2000, c = 0.5)
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— In pooled-data setting: noise variance 77 = < Performance 15 R | | os) g o
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: : : - Variation on 1 ~-loca
How can we achieve the same noise variance in the ariation o

. . . fM Rl + o —k-capeCCA| | o \ | o5 ~ -
distributed setting? — employ CAPE protocol (4] Begg oo oo - Ske L oeo-voveos

Can we have . CCA algorithm that preserves privacy’ Dataset 1e1-3(a)1I?;-rziva::(s;'-:f)aram()10 (b) Total samples (N) 1(;-5(c)1Pi;jlac1yle|;2ra1rl:a-(2(5fe-2
provides good utility and operates in distributed-data Proposed Algorithm: capeCCA

setting? Conclusion and Future Works

Problem Formulation capeCCA achieves the same utility as pooled-data scenario in the

— consider a system with S different sites honest-but-curious setting

— site 5 contains views: X, € RPN Y e RPN Takeaway: Future directions:

— pooled data scenario: X = [X...Xg] € RP>*! and e capeCCA has better utility than local and conv for ® can we scrap the “trusted”
Y =[Y,... Y| € RPN the same privacy level noise generator? [4]

— goal: find subspaces U € RP>K |V ¢ RP»>E [3] e capeCCA can reach non — priv in some regimes ® can we achieve the same in
L e for fixed €: more samples — better performance an asymmetric network? |4
minimize IU'X - V'Y P P y 4

UV e for fixed N and S: higher ¢ — better performance ® can we achieve adapt our

! 1 — ()7
subject to NUTXXTU =1, NVTYYTV =1, approach to 0 = 0:
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