
Phylogenetic Analysis of Software
Using Cache Miss Statistics

Sebastiano Verde, Simone Milani, Giancarlo Calvagno - University of Padova
{sebastiano.verde, simone.milani, calvagno}@dei.unipd.it

Abstract

While the phylogenetic analysis of multimedia documents keeps
being investigated, some recent studies have shown the possibil-
ity of re-using the same strategies to analyze the evolution of com-
puter programs (Software Phylogeny), considering its several ap-
plications spanning from copyright enforcement to malware de-
tection.
This work presents a solution for reconstructing the phylogenetic
dependencies among different releases of a given program. The
proposed method collects cache miss statistics during the program
execution, builds a dissimilarity matrix from the results, and then
estimates the corresponding Software Phylogenetic Tree (SPT) us-
ing a refined minimum spanning tree algorithm.

Cache profiling

Using Cachegrind tool.
Cache statistics are rep-
resented with 9 features
per function.

Cache type Instructions Data (reads) Data (writes)
Total cache accesses Ir Dr Dw

1st-level cache misses I1mr D1mr D1mw

Last-level cache misses ILmr DLmr DLmw

M functions called by the program −→ C , cache data matrix (M × 9)

Software dissimilarity

Cache 

profiling

Dissimilarity

matrix

S
o

ft
w

ar
e 

se
t

(𝑠𝑖 , 𝑠𝑗) (𝐶𝑖
𝑓
, 𝐶𝑗

𝑓
)

Input data

𝑓

minST MaxST
Edge count

matrix
𝑑𝑖,𝑗
𝑓

𝑒𝑖,𝑗෨𝐺𝑓

Two-step MST

෨𝐺

Given a pair of matrices (Cf
i , C

f
j ), we define their dissimilarity as

dfi,j = ‖Cf
i − Cf

j ‖2, (1)

where ‖·‖2 denotes the matrix 2-norm.

Different programs may use different functions⇒ incompatible ma-
trix dimensions. Possible workarounds:

1. intersection of the two function sets;

2. union of the two function sets (missing functions represented
with zero-vectors).

Two-step minimum spanning tree
The algorithm allows the estimation of a single minimum spanning
tree from multiple realizations of the dissimilarity matrix, through a
twofold application of a standard MST algorithm.

E
d

g
e co

u
n
t

0 4 6

4 0 7

6 7 0

𝑑𝑖,𝑗
(1)

0 3 7

3 0 8

7 8 0

𝑑𝑖,𝑗
(2)

0 5 8

5 0 6

8 6 0

𝑑𝑖,𝑗
(3)

1 2 3
5 6

1

2

3

3

7

1

2

3

4

6

0 3 2

3 0 1

2 1 0

1

2

3

3

2

෨𝐺(1)

෨𝐺(2)

෨𝐺(3)

MaxST

minST

෨𝐺

𝑒𝑖,𝑗

1. ∀f run Kruskal’s algorithm on dfi,j −→min. spanning tree G̃f

2. ∀(i, j) count occurrences ei,j of edge (i, j) among all the esti-
mated trees −→ edge count matrix E = [ei,j ]

3. Run Kruskal’s algorithm on −E −→ G̃

Method comparison
Percentage of correct edges vs. no. input videos in Thor codec. Com-
parison between 2-step Kruskal (2K) and average dissimilarity (D̄)
combined with cache intersection, union and pixel-based method [1].

Software set and results

Analyzed software Percentage of correct edges
Software name Type Input Releases 2Kunion D̄union 2Kinters D̄inters Pixel-based [1]
Thor Video coding 7 videos 10 0.89 0.89 0.67 0.78 0.56
OpenJPEG Image coding 30 images 6 0.60 0.60 0.60 0.60 0.20
RNNoise Audio denoising 40 audios 5 0.50 0.25 0.50 0.25 -
LZ4 Data compression 30 images 7 0.67 0.67 0.67 0.67 -
LIBSVM Machine learning 5 datasets 7 0.83 0.83 0.50 0.50 -

[1] Sebastiano Verde, Simone Milani, and Giancarlo Calvagno,“Phylogenetic analysis of multimedia codec software,” in Proc. of EUSIPCO 2018, Sept. 2018.


