BM Research

	2s			2s		Fixed length
	Spk X	Spk A		Spk B		
 0	 1.5 <i>~</i>	1.8 3.0	03	.4	5.	8
		1.2s		2s		Variable length

PRE-TRAINING OF SPEAKER EMBEDDINGS FOR LOW-LATENCY SPEAKER CHANGE DETECTION IN BROADCAST NEWS

LEDA SARI¹, SAMUEL THOMAS², MARK HASEGAWA-JOHNSON¹, MICHAEL PICHENY² Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ² IBM Research AI

	ASR boundary		G
	Variable	2-second	Va
-vector	0.3150	0.4902	C
Fri-Eucl-F	0.3332	0.4591	0
Fri-Eucl-T	0.4746	0.5323	0
		·	

• Score combination of i-vector and Triplet-T system performs 5% better on 2s segments

3. RESULTS: ACCURACY

- 144 hours of audio from LDC HUB4 Broadcast News
- Training segments have duration of 2s

Sampled 500k pairs, 329 triplets for training

Not	Pre-train	Freeze	Accu.
		Embed.	
С	-	_	52.2
С	-	_	86.6
S+C	Gender	Yes	76.9
S+C	Gender	No	78.1
S+C	Contrast	Yes	77.4
S+C	Contrast	No	87.5
S+C	Triplet	Yes	82.7
S+C	Triplet	No	89.0

- Among three pre-training methods triplet loss is the best
- Using Euclidean distance is slightly better than the cosine distance

6. CONCLUSIONS

- 1. Jointly trained Siamese network and the classifier performs better than classifying i-
- 2. Siamese embeddings are more robust to the duration mismatch between training and test segments
- 3. Siamese embeddings perform better than ivectors for $\leq 2s$ segments which is important for achieving low-latency