

A Data-Selective LS Solution to TDOA-based Source Localization **J.A. Apolinário Jr.[†]**, H. Yazdanpanah[†], A.S. Nascimento F.[†] and **M.L.R. de Campos**[‡]

Objectives

- Review the classical LS solution of the TDOA-based source localization problem
- Employ data-selection to this solution
- Show the performance of the new approach
- Point out scenarios for this new solution

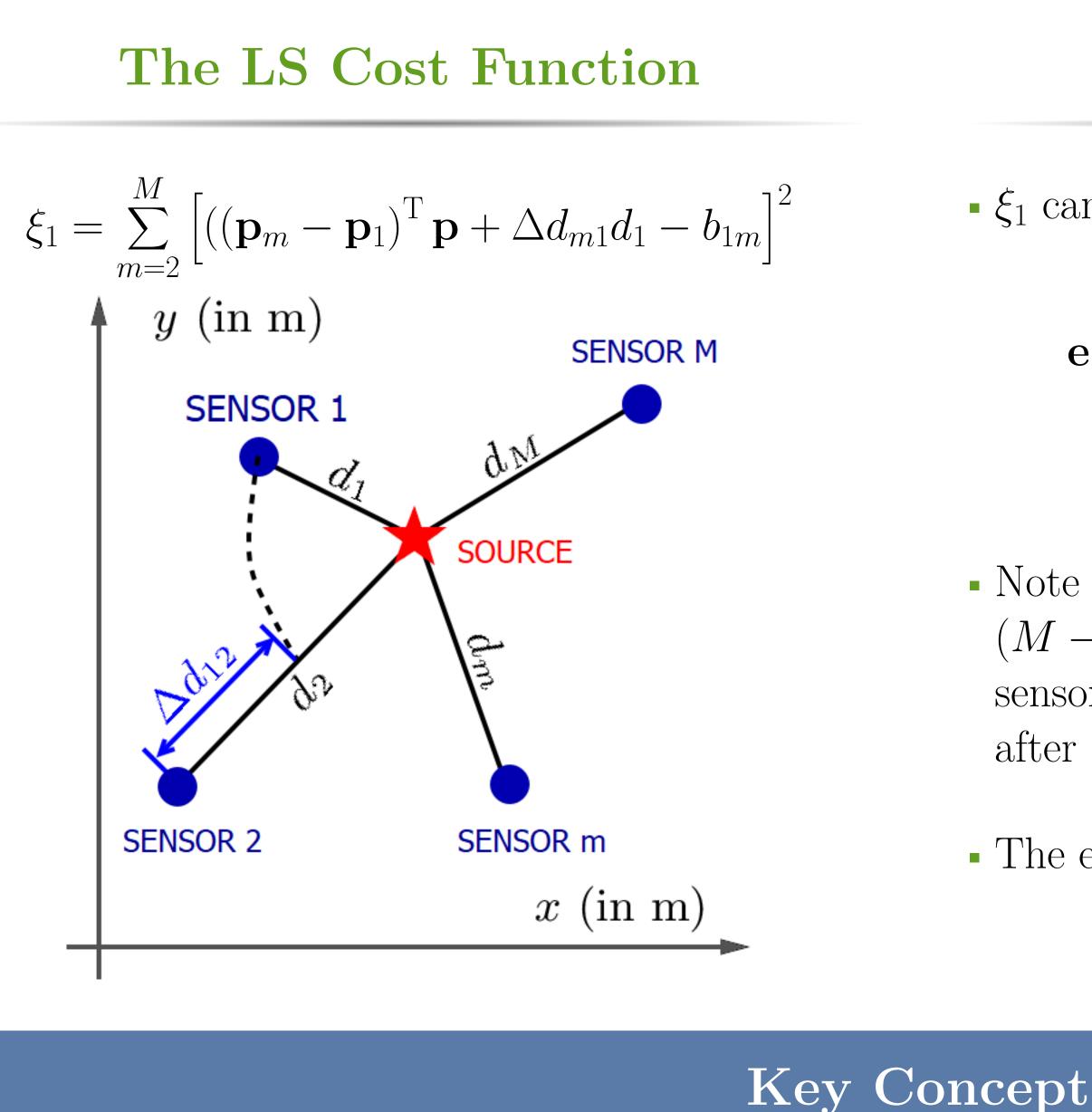
Introduction

- The source localization problem has applications in many fields
- Usual strategies: received signal strength (RSS), direction of arrival (DOA), time of arrival (TOA), and time difference of arrival (TDOA)
- The TDOA strategy measures the difference of transmission time of a single signal between the receiver nodes
- It has a closed form, is more robust to reflections and easier to implement (lower computational burden and requiring no sensor arrays)
- The signal from the sensors must be synchronized

The Classical Approach

- In a 2D scenario, M sensors with known positions given by $\mathbf{p}_m, 1 \leq m \leq M \Rightarrow N = \frac{M(M-1)}{2}$ TDOAs
- We define the range-difference from the unknown source and sensors i and j: $\Delta d_{ij} = d_i - d_j = \frac{v\tau_{ij}}{f_s}, i > j$
- The TDOA τ_{ij} (in number of samples) is obtained from the peak of the cross-correlation of the signals acquired by the sensors
- For the *m*-th sensor, d_m is the distance from the source (unknown position \mathbf{p}) to the *m*-th sensor
- Therefore, we can write $\|\mathbf{p} \mathbf{p}_1\|^2 = d_1^2$ and $\|\mathbf{p} - \mathbf{p}_m\|^2 = (d_1 + \Delta d_{m1})^2 \cdots$
- · · · which leads to $(\mathbf{p}_m \mathbf{p}_1)^T \mathbf{p} + \Delta d_{m1} d_1 = b_{1m}$, where $b_{1m} = \frac{\|\mathbf{p}_m\|^2 \|\mathbf{p}_1\|^2 \Delta d_{m1}^2}{2}, 2 \leq m \leq M$

[†]Military Institute of Engineering (IME) and [‡]Federal University of Rio de Janeiro (UFRJ) — Rio de Janeiro, Brazil



We next extend the number of pairs from (M-1) to $\frac{M(M-1)}{2}$ (as in [Khalaf-Allah, 2014]) and, assuming a number of incorrect TDOAs estimates, propose a criterion to select those leading to better results!

Using more TDOAs

- The previous solution uses only M-1 from a total of $N = \frac{M(M-1)}{2}$ TDOA measurements
- Assuming similar errors, we expect that using more measurements leads to more accurate results
- Using $\|\mathbf{p} \mathbf{p}_m\|^2 = (d_2 + \Delta d_{m2})^2$ instead of d_1 : $\xi_2 = \sum_{m=3}^{M} \left((\mathbf{p}_m - \mathbf{p}_2)^{\mathrm{T}} \mathbf{p} + \Delta d_{m2} d_2 - b_{2m} \right)^2 = \|\mathbf{e}_2\|^2$ where $b_{2m} = \frac{\|\mathbf{p}_m\|^2 - \|\mathbf{p}_2\|^2 - \Delta d_{m2}^2}{2}, \ 3 \le m \le M$
- • • and the $(M-2) \times 1$ error vector \mathbf{e}_2 is given as

$$\mathbf{e}_{2} = \underbrace{\begin{bmatrix} (\mathbf{p}_{3} - \mathbf{p}_{2})^{\mathrm{T}} & \Delta d_{32} \\ \vdots & \vdots \\ (\mathbf{p}_{M} - \mathbf{p}_{2})^{\mathrm{T}} & \Delta d_{M2} \end{bmatrix}}_{\mathbf{A}_{2}} \underbrace{\begin{bmatrix} \mathbf{p} \\ d_{2} \end{bmatrix}}_{\mathbf{x}_{2}} - \underbrace{\begin{bmatrix} b_{23} \\ \vdots \\ b_{2M} \end{bmatrix}}_{\mathbf{b}_{2}}$$

• Similarly, we do the same for d_3 to d_{M-1} defining matrices \mathbf{A}_3 to \mathbf{A}_{M-1} and vectors \mathbf{b}_3 to \mathbf{b}_{M-1}

The closed-form solution

$$\mathbf{e}_{1} \text{ can be expressed } \|\mathbf{e}_{1}\|^{2} \text{ where}$$

$$\mathbf{e}_{1} = \begin{bmatrix} (\mathbf{p}_{2} - \mathbf{p}_{1})^{\mathrm{T}} & \Delta d_{21} \\ (\mathbf{p}_{3} - \mathbf{p}_{1})^{\mathrm{T}} & \Delta d_{31} \\ \vdots & \vdots \\ (\mathbf{p}_{M} - \mathbf{p}_{1})^{\mathrm{T}} & \Delta d_{M1} \end{bmatrix} \underbrace{\begin{bmatrix} \mathbf{p} \\ d_{1} \end{bmatrix}}_{\mathbf{x}_{1}} - \underbrace{\begin{bmatrix} b_{12} \\ b_{13} \\ \vdots \\ b_{1M} \end{bmatrix}}_{\mathbf{b}_{1}}$$

• Note (in a 2D scenario) that \mathbf{A}_1 is an $(M-1) \times 3$ matrix \rightsquigarrow if we have at least four sensors, an unconstrained solution is obtained after $\nabla_{\mathbf{x}_1} \xi_1 = \mathbf{0}$

• The estimated position of the source is given by $\hat{\mathbf{p}} = [\mathbf{I} \ \mathbf{0}] \, \hat{\mathbf{x}}_1 = [\mathbf{I} \ \mathbf{0}] \left(\mathbf{A}_1^{\mathrm{T}} \mathbf{A}_1\right)^{-1} \mathbf{A}_1^{\mathrm{T}} \mathbf{b}_1$

The Extended Solution

• The extended cost function is formed using all NTDOAs measurements:

$$\xi = \sum_{m=1}^{M} \xi_m,$$

and $\mathbf{e} = -\mathbf{A} \quad [\mathbf{p}^{\mathrm{T}} d \]^{\mathrm{T}} = \mathbf{b}$

where $\xi_m = \mathbf{e}_m^{\mathrm{T}} \mathbf{e}_m$, and $\mathbf{e}_m = \mathbf{A}_m [\mathbf{p}^{\mathrm{T}} d_m]^{\mathrm{T}}$

• From the definitions of ξ_m , \mathbf{e}_m and \mathbf{A}_m , the extended cost function can be expressed as $\boldsymbol{\xi} = \mathbf{e}^{\mathrm{T}} \mathbf{e}$, where

$$\begin{bmatrix} (\mathbf{p}_{2} - \mathbf{p}_{1})^{\mathrm{T}} & \Delta d_{21} & 0 & 0 \cdots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\mathbf{p}_{M} - \mathbf{p}_{1})^{\mathrm{T}} & \Delta d_{M1} & 0 & 0 \cdots 0 \\ (\mathbf{p}_{3} - \mathbf{p}_{2})^{\mathrm{T}} & 0 & \Delta d_{32} & 0 \cdots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\mathbf{p}_{M} - \mathbf{p}_{2})^{\mathrm{T}} & 0 & \Delta d_{M2} & 0 \cdots 0 \\ \vdots & \vdots & \vdots \\ (\mathbf{p}_{M} - \mathbf{p}_{M-1})^{\mathrm{T}} & 0 & 0 & \cdots 0 \Delta d_{M(M-1)} \end{bmatrix} \underbrace{\begin{bmatrix} \mathbf{p} \\ d_{1} \\ d_{2} \\ \vdots \\ d_{M-1} \\ \mathbf{x} \end{bmatrix}}_{\mathbf{x}} - \underbrace{\begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{M-1} \end{bmatrix}}_{\mathbf{b}}$$

• Such that the extended LS solution is given by $[\hat{\mathbf{p}}^{\mathrm{T}} \hat{d}_1 \hat{d}_2 \cdots \hat{d}_{M-1}]^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}$

Let p $N \leftarrow$ Let τ_a Set v $\Delta d_{ij} \leftarrow$ $|\Delta d_{ij}|_{\mathbf{1}}$ Form $\hat{\mathbf{p}}_n \leftarrow$ $\begin{array}{c} d_m \leftarrow \\ \Delta \hat{d}_{ij} \end{array} \\ \end{array}$ $\xi_{min} \leftarrow$ for eac

do

TNR / # outliers	Geometry	Conv. LS	Ext. LS	DS-LS
10dB / 3	1	4.1885	4.0103	1.3808
	2	5.4328	3.5410	0.3731
20dB / 2	1	2.1831	2.2836	0.1312
	2	2.2328	1.7517	0.1073
30dB / 1	1	0.8383	0.9316	0.0355
	2	0.5861	0.5022	0.0337
40dB / 0	1	0.0140	0.0095	0.0110
	2	0.0108	0.0065	0.0108

• DS is effective in TDOA-based localization • The algorithm is more successful for noisy and reverberant scenarios

The Proposed Algorithm

$\mathbf{D}_{m}, 1 \leq m \leq M$, be the positions of M sensors $\frac{M(M-1)}{2}$	
$\frac{2}{2}$	
\overline{f}_{ij} be the N available TDOAs (in # samples)	
and f_s , and choose n	
$\leftarrow \frac{v\tau_{ij}}{f_s}$ for all N TDOAs	
$\ \max \leftarrow \ \mathbf{p}_i - \mathbf{p}_j \ $ for all N TDOAs	
\mathbf{n} matrix \mathbf{A} and vector \mathbf{b}	
$[\mathbf{I} \ 0] (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}$	
$\ \hat{\mathbf{p}}_n - \mathbf{p}_m\ $ for all $1 \le m \le M$ sensors	
$ \ \hat{\mathbf{p}}_n - \mathbf{p}_m\ \text{ for all } 1 \le m \le M \text{ sensors} \\ \leftarrow \hat{d}_i - \hat{d}_j \text{ for all } N \text{ possible pairs } \{i, j\} $	
$-\frac{1}{N}\sum_{\{i,j\}} \left(\Delta \hat{d}_{ij} - \Delta d_{ij}\right)^2$	
ach subset of measurements \mathcal{S}_n	
$ \{ \mathbf{if} \text{ all } \{ \Delta d_{ij} \leq \Delta d_{ij} _{\max}, \{i, j\} \in \mathcal{S}_n \} $	
Adjust \mathbf{A}_n and \mathbf{b}_n according to \mathcal{S}_n	l
$\hat{\mathbf{p}}_n \leftarrow [\mathbf{I} \ 0] \left(\mathbf{A}_n^{\mathrm{T}} \mathbf{A}_n\right)^{-1} \mathbf{A}_n^{\mathrm{T}} \mathbf{b}_n$	
$\hat{d}_m \leftarrow \ \hat{\mathbf{p}}_n - \mathbf{p}_m\ \text{ for } 1 \le m \le M$	
$\left\{ \begin{array}{c} \Delta \hat{d}_{ij} \leftarrow \hat{d}_i - \hat{d}_j \text{ for } \{i, j\} \in \mathcal{S}_n \right. \right.$	
$\left[\xi_n \leftarrow \frac{1}{n} \sum_{\{i,j\} \in \mathcal{S}_n} \left(\Delta \hat{d}_{ij} - \Delta d_{ij} \right) \right] $	
$\mathbf{if} \ \xi_n < \xi_{min}$	
$\left\{ \begin{array}{l} \text{if } \xi_n < \xi_{min} \\ \text{then } \begin{cases} \xi_{min} \leftarrow \xi_n \\ \mathbf{p}_o \leftarrow \hat{\mathbf{p}}_n \end{cases} \right. \end{cases}$	
(\mathbf{p}_0) (\mathbf{p}_0)	

return (\mathbf{p}_o)

Experimental Results

 $TNR = 10 \log(\frac{\frac{1}{N}\sum_{ij}\tau_{ij}^2}{\sigma^2})$

Conclusions

