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Measure of Dependence

Mutual information (MI) is a measure of dependence between two
random variables.
MI is widely used in information theory, statistics and machine
learning.

Mutual Information
The general mutual information function between X1 and X2 is

Ig (X1;X2) :=

∫
g

(
f1(x1)f2(x2)

f12(x1, x2)

)
f12(x1, x2)dx1dx2,

where g is smooth convex function with g(1) = 0 .

For Shannon mutual information, g(x) = x log x .
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Problem Definition: Estimation

Goal: Accurate and computationally fast estimation of divergence

Assumption:
Densities are (Hölder) smooth and bounded from below and above

Convergence analysis: find rate of decrease of MSE in #samples

MSE = Bias 2 + Variance = cN−β/(2β+d)

⇒ Optimal parametric MSE rate: β →∞

RMSE =
√

MSE = cN−1/2
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This work achieves optimal rates using ensemble estimators
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Previous Work on Estimation of Information Measures

N: Number of samples; k : Parameter of kNN graph; d : Dimension.
The densities are assumed to be d times differentiable.

U of Michigan ICASSP 2019 7 / 21



Proposed Approach
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Locality Sensitive Hashing

N i.i.d pairs (Xi ,Yi ) are drawn from PXY .
X = {X1, ...,XN} and Y = {Y1, ...,YM}.
Hash map of X and Y: H : Rd → {1, ...,F}.
F is the number of buckets and is a linear function of N.
H(x) specifies a vertex index of a so called Dependence Graph.
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Locality Sensitive Hashing

Hash map of X and Y: H : Rd → {1, ...,F}.
Locality-Sensitive Hashing (LSH) H

H(u) = [h(u1), h(u2), ..., h(ud)], h(u) = b
u + b

ε
c

u = [u1, . . . , ud ] represents X or Y .
b is a fixed random number in the range [0, ε].
ε is a bandwidth parameter of the estimator.
H maps neighboring points to common value.
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Dependence Graph

A bipartite graph with two sets of nodes V and U.
Map the points in X and Y to the nodes in U and V using H.

An example of a dependence graph
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Dependence Graph Estimator

Assign the weights ωi and ω′j respectively to the nodes vi and uj .
ωij denotes the weight of the edge (vi , uj).

ωi =
Ni

N
, ω′j =

Mj

N
, ωij =

Nij/N

(Ni/N)(Mj/N)

Ni and Mj : respectively the number of nodes mapped to vi and uj .
Nij is the number of node pairs (Xk ,Yk) mapped to (vi , uj).
Nij ≤ Ni ,Nj . We only consider the edges with Nij > 0.
ωi , ωj and ωij respectively are estimates for fi , fj and fij/fi fj .

Dependence Graph Estimator of MI
The base dependence graph estimator is defined as follows

Î (X ,Y ) :=
∑

eij∈EG

ωiω
′
jg(ωij)
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Dependence Graph Estimator

Assume that f1 and f2 are density functions with continuous and
bounded derivatives of up to the order d .

Theorem
The bias of the estimator can be upper bounded as

E
[
Îg (X ,Y )

]
=

∫
g

(
f1(x)

f2(x)

)
f2(x)dx +

d∑
i=1

C ′′
i ε

i + O

(
1

Nεd

)
.

Variance is also proved to be upper bounded by O(1/N).
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EDGE: Ensemble Dependence Graph Estimator

Let L := {l1, l2, ..., lL} be a set of index values.
Consider an ensemble of estimators {El}l∈L, and the weights w with∑

l∈L w(l) = 1.

w0(l) are the solutions of a specific offline optimization problem.
The ensemble estimator Ew0 :=

∑
l∈L w0(l)El achieves the optimal

parametric rate O(1/N).
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Numerical Results

Comparison of EDGE, Ensemble DKE and KSG Shannon MI estimators.
X ∈ {1, 2, 3, 4}, and each X = x is associated with multivariate Gaussian random

vector Y , with d = 4.
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Application in Deep Learning

Schwartz-Ziv and Tishby (2017) proposed to use mutual information
to analyze deep neural nets.
I (Y ;T ): The information of the hidden layer T with respect to Y .
I (X ;T ): The compression of X .

Figure: A DNN with dimension 12-10-7-5-4-3-2 with tanh activations
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Claims

Compression happens in any network.
Saxe et al (ICLR 2018) refuted this claim by showing that there is no
compression with ReLU activation.
The estimation method used by both of the papers was inaccurate
(histogram).

Learning consists of two distinct phases; fitting and compression.
Compression occurs due to the diffusion-like behavior of SGD.

We need a stronger estimator in order to get accurate results for
higher dimensions.
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Information Plane Using EDGE

MNIST handwriting dataset classification.
Network size: 728-1024-20-20-20-10.
Compression is observed for both tanh and ReLU activations.
The estimated intrinsic dimension is 14 (Costa & Hero 2006).
We choose L = 20 as the number of basic estimators for the ensemble
estimator.

Figure: Information plane estimated using EDGE
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Our Results

Compression happens in any network.
We observe compression in DNNs with ReLU and tanh activations as
well as CNNs.

Compression could start from the beginning of the training process.
We observe compression with other optimization methods such as
BGD and Adam.
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Conclusion

Propose EDGE, an optimal estimator of mutual information based on
locality sensitive hashing (LSH) and dependence graph.
Prove that the MSE convergence rate is O(1/N).
Apply EDGE on estimation of Information Plane (IP) in deep learning.

Future Work:

Explore the impact of choosing different hash functions in practice.
Derive non-asymptotic convergence rate.
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Questions?
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