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A. Sliding Information Distance (SLID)

• Approximate the information distance (ID) between adjacent subsequences xk and yk

located at byte k in sequence z [Algorithm 1]

• Form Lempel-Ziv (L-Z) dictionaries D(xk) and D(yk) [Algorithm 2]
• Compute Sk, the Jaccard distance between them at byte k

• Slide the local window to the right and repeat the calculation to estimate this distance 
along z
• Update to D(xk+1) and D(yk+1) by drop/append for efficiency [Algorithm 3]
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ABSTRACT
We present a new method for boundary detection within sequential data using compression-based
analytics. Our approach is to approximate the information distance between two adjacent sliding
windows within the sequence. Large values in the distance metric are indicative of boundary
locations. A new algorithm is developed, referred to as sliding information distance (SLID), that
provides a fast, accurate, and robust approximation to the normalized information distance. A
modified smoothed z-score algorithm is used to locate peaks in the distance metric, indicating
boundary locations. A variety of data sources are considered, including text and audio, to
demonstrate the efficacy of our approach.

METHODS

RESULTS

DATASETS
We used synthesized datasets with known ground truth in order to 
quantify algorithm performance:
1. Text randomly selected from English and Spanish translations of 

United Nations (UN) documents
2. Audio randomly selected from male and female speakers from the 

LibriSpeech ASR corpus
Each data set contains 100 synthesized boundaries with a section 
length of 512 tokens.

CONCLUSIONS
We have presented a fast, efficient, and robust compression-based method for detecting boundaries in arbitrary sequences of data, including data streams.  We have 
demonstrated the versatility of our approach through several experiments on multiple data sources.  As our method is computationally efficient, it is possible to apply different 
window sizes to obtain a multi-scale structural representation of the underlying data source for boundary detection.  This could lead to further improved detection performance 
or provide the ability to identify coarse and fine-grained boundaries.  We defer investigating this problem to our future work.
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Algorithm 2 Initialize the LZ dictionary.

1: function makeLZdict(sequence b)
2: ` [ ], start  0, end  0
3: while end < |b| do
4: item  b[start : end]
5: if item /2 ` then
6: start  end
7: end if
8: `.append(item)
9: end  end + 1

10: end while
11: return ` , set(`)
12: end function

Algorithm 3 Update the LZ dictionary.

1: function updateLZdict(token t, list `)
2: if `[�1] /2 `[0 : �2] then
3: item  t
4: else
5: item  `[�1] + t
6: end if
7: `  `[1 :]
8: `.append(item)
9: return ` , set(`)

10: end function

B. Boundary Detection

• Any significant change in the SLID score indicates a possible 
boundary location

• We apply a smoothed z-score algorithm to identify peaks
• The score is anomalous at k if it exceeds n standard deviations 

over the running mean of the previous m bytes
• We execute the z-score in forward and reverse to identify regions of 

local anomalous scores (shaded regions), then take the maximum

Algorithm 1 Sliding information distance.

1: function SLID(sequence z, window size w)
2: S  [0]
3: for k = w, . . . do
4: xk  zk�w, . . . , zk�1

5: yk  zk, . . . , zk+w�1

6: if k == w then
7: Lx, Dx  makeLZdict(xk)
8: Ly, Dy  makeLZdict(yk)
9: else

10: Lx, Dx  updateLZdict(xk[�1], Lx)
11: Ly, Dy  updateLZdict(yk[�1], Ly)
12: end if
13: S.append(1� |Dx \Dy|/|Dx [Dy|)
14: end for
15: return S
16: end function

Algorithm 1 Sliding information distance.

1: function SLID(sequence z, window size w)
2: S  [0]
3: for k = w, . . . do
4: xk  zk�w, . . . , zk�1

5: yk  zk, . . . , zk+w�1

6: if k == w then
7: Lx, Dx  makeLZdict(xk)
8: Ly, Dy  makeLZdict(yk)
9: else

10: Lx, Dx  updateLZdict(xk[�1], Lx)
11: Ly, Dy  updateLZdict(yk[�1], Ly)
12: end if
13: S.append(1� |Dx \Dy|/|Dx [Dy|)
14: end for
15: return S
16: end function

• Compare SLID to Normalized Compression Distance (NCD), 
Lempel-Ziv Jaccard Distance (LZJD), n-Gram, and a Novelty Score 
(developed for audio signals)

• SLID is both accurate (see Precision-Recall curves) and efficient, 
while being robust to small changes in information distance
• A noisy signal is more likely to produce false positives
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Fig. 1. Boundary detection using NCD, SLID, and LZJD on written text with
a sliding window of width w = 512 (blue) and the peak-finding algorithm.
SLID using w = 256 (green) is also shown for comparison.

Fig. 2. Precision-recall (P-R) curves for the UN document data set.

a sliding boundary detection [10]. Although we use PP-
MAC [16] as the compressor for NCD, we note that we have
tried alternative fast compression algorithms and observed a
decrease in the performance of NCD.

Figure 1 shows boundary detection results for each method
using a window width w = 512. The positions of true
boundaries are denoted by the vertical dashed red lines. As
mentioned in Section IV, every multiple of s = 512 is a true
boundary. The shaded red regions indicate the sets K defined
by Eq. (2) for which the smoothed z-score algorithm indicates
anomalous positions, and the vertical blue lines indicate k

⇤,

TABLE I
TIME, NOISINESS (�), AND CORRELATION WITH NCD FOR THE RESULTS

PRESENTED IN FIG. 1.

Time (seconds) � NCD Correlation

NCD 1100 0.0019 1.00
SLID 0.2 0.0016 0.78
LZJD 3.6 0.0123 0.77

the boundaries identified within K. Thus any instance of a blue
line corresponding with a red dashed line is a true positive;
any instance of a blue line not corresponding to a red-dashed
line is a false positive.

By visual inspection of Fig. 1, all compression-based
distance metrics provide some indication of boundaries, as
indicated by peaks in the score near (or at) a true boundary.
Although we have selected a window size w equal to the sec-
tion length s, we also show SLID results using a window size
w = 256 (green) to demonstrate that our method successfully
produces peaks over a range of window sizes. Future work
will involve extending SLID to automatically determine the
optimal window size.

Table I summarizes the performance of each method with
respect to the three qualities we desire in a boundary detec-
tion scheme: (1) efficiency, (2) smoothness, or robustness to
small changes in information content, and (3) the ability to
accurately approximate the NID. Both LZJD and SLID run
three and four orders of magnitude, respectively, faster than
NCD, and are still accurate approximations for the NID, as
quantified by the correlation coefficient with the NCD. Further,
let �k = d(k) � d(k � 1) for k = w, . . ., where we use
d(k) to denote a general distance metric at location k in the
sequence. SLID yields a much smaller standard deviation, �, in
�k compared to LZJD, indicating a smoother signal. As shown
qualitatively in Fig. 1, a noisy LZJD (lower panel) produces
several false positives, whereas SLID (middle panel) produces
a notably smoother score for improved boundary detection.

To assess performance, Fig. 2 presents a precision recall
(PR) graph with average precision (AP) scores. These results
are obtained from the full dataset constructed from 100 seg-
ments of length s = 512 chosen from the two translations
of the UN document. NCD outperforms all other metrics
but is extremely slow; SLID significantly outperforms LZJD
(compare AP = 0.44 with AP = 0.21). As discussed above,
this result can primarily be attributed to the smoother signal
for SLID and therefore far fewer false positives.

For comparison to more traditional text-based methods,
Fig. 2 also presents results for the cosine distance over adjacent
sliding windows of n-gram distributions. The 3-gram distance,
which is commonly used to describe written language [17],
performs as well as NCD. In contrast, the 1-gram distance can-
not capture the full complexities of the structural differences
between Spanish and English text, and the 5-gram distance
cannot capture the statistical distribution within the sliding
window of width w = 512. If the underlying data can be
well-described by an n-gram, as is the case with text, then it
is not surprising that an n-gram approach (with the appropri-
ate n) can outperform a general compression-based method.
However, in general, some knowledge of the underlying data
is needed to select the optimal n-gram; compression-based
methods are a good choice where there is no such knowledge.

Finally, we apply SLID to an audio dataset for which we
do not expect an n-gram to be the appropriate description of
the underlying data. In Fig. 3, we present results for SLID,
together with an n-gram approach and a specialized method
developed to detect novelty in audio data [18]. Red dashed
lines correspond to true boundaries and blue lines correspond

Analysis of UN Documents Analysis of Audio Data

position

SLID

• If data is well-described by an n-gram, as is the case with text, a 3-gram 
performs best
• Knowledge of underlying data needed to select optimal n 
• Compression is a good choice when there is no such knowledge

• SLID performs consistently well for both applications
• Even outperforming the specialized novelty score for audio. 


