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Abstract

▶Objective: Quantitative study of logistic regression in modern
regime of large dimensional, numerous data.

▶Approach: Combine flexibility of “leave-one-out” approach for
handling implicit solutions and that of random matrix theory (RMT)
for structured data models.

▶Results: Statistical distribution of learned parameters, dependent
of training data.

Preliminaries

Logistic Regression:
▶Assumption of logic model: for some data vector x ∈ Rp with class
label y = ±1, ∃β∗ ∈ Rp such that

P(y |x) = σ(yiβ
T
∗xi)

where σ(t) = 1
1+e−t .

▶Method: find estimate β̂ of β∗ by maximizing posterior probability
P(y |x) over training data set {(x1, y1), . . . , (xn, yn)}, i.e.,

β̂ = argminβ∈Rp
1
n

n∑
i=1

ρ(yiβ
Txi) (1)

with ρ(t) = ln(1 + e−t).

▶Possibility of ill-defined (1): if ∃βs such that yiβ
T
s xi > 0 for all i , then

β̂ = qβs with q = +∞.

▶Regularized version:

β̂ = argminβ∈Rp
1
n

n∑
i=1

ρ(yiβ
Txi) +

λ

2
∥β∥2, λ > 0. (2)

Logic Model under Normality:
▶Gaussian mixture: N (±µ,C) with balanced class priors.
▶Verifying assumption:

P(yi|xi) =
P(yi)P(xi|yi)

P(yi)P(xi|yi) + P(−yi)P(xi| − yi)

=
1

1 + e2yiµTC−1xi
= σ(yiβ

T
∗xi)

with β∗ = 2C−1µ.

High dimensional setting:
▶At arbitrarily large p, n/p → ξ > 0.
▶Non-trivial regime: ∥µ∥ = O(1), ∥C∥ = O(1) & ∥C−1∥ = O(1) w.r.t. p.

Technical Approach

Objective: asymptotic statistics of implicit solution

λβ̂ =
1
n

n∑
i=1

ciyixi, ci ≡ ψ(yiβ̂
Txi)

where ψ(t) ≡ −∂ρ(t)
∂t = 1

1+et .

Main difficulty: intractable statistical behavior of ci due to implicit
dependence between β̂ and xi.

Leave-one-out version:

λβ̂−i =
1
n

∑
j ̸=i

ψ(yjβ̂
T
−ixj)yjxj

▶Tractable leave-one-out error β̂T
−ixi since β̂−i independent of xi.

▶Approximation of β̂: ∥β̂−i − β̂∥ → 0, and β̂T
−ixj − β̂Txj → 0 for j ̸= i .

Technical Approach

Key ideas:
▶Express ci as function fo β̂T

−ixi:

ci = ψ
(

yiβ̂
Txi

)
≃ ψ

(
yiβ̂

T
−ixi + κci

)
≃ ψ

(
proxκ(yiβ̂

T
−ixi)

)
where proxκ(t) = argminz∈R{κρ(z) + (z − t)2/2} for some scalar κ
determined by RMT.

▶Demonstrate from

λβ̂ ≃ 1
n

n∑
i=1

yiψ
(

proxκ(yiβ̂
T
−ixi)

)
xi (3)

the asymptotic normality of β̂ by CLT and quasi-independence
between ψ

(
proxκ(yiβ̂

T
−ixi)

)
xi and ψ

(
proxκ(yjβ̂

T
−jxj)

)
xj, i ̸= j .

▶Find statistical parameters (i.e., mean, covariance) of β̂, by taking
corresponding expectation on both sides of (3).

Main Results

Theorem (Distribution of β̂) For β̂ given by (2)

∥β̂ − β̃∥ → 0 where (λIp + τC) β̃ ∼ N (ηµ, γC/n)
with (η, γ, τ ) ∈ R3

+ given by

η = E[ψ(proxκ(r ))], γ = E[ψ2(proxκ(r ))], τ =
E[ψ(proxκ(r ))(m − r )]

σ2

for some r ∼ N (m, σ2) with
m ≡ ηµT (λIp + τC)−1 µ

σ2 ≡ η2µT (λIp + τC)−1 C (λIp + τC)−1 µ + γ
1
n

tr
[
(λIp + τC)−1 C

]2
.

Remarks:
▶Test error: P

(
yiβ

T
−ixi < 0

)
− P(r < 0) → 0.

▶Unregularized solutions unbiased in direction, but biased in scale.

▶γ/η2, indicator of variability of β̂, is minimized at λ = +∞.

▶Special case with C = Ip: classification performance maximized at
trivial solution with λ = +∞, when β̂ proportional to 1

n

∑n
i=1 yixi.

Numerical Validation
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Figure: Comparison between yiβ
T
−ixi and a Gaussian distribution N (m, σ2) with µ = [2, 0p−1],

C = Ip, for λ = 1, p = 256 and n = 512.
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Figure: Misclassification error as a function of λ, with µ = [1, 1, 0p−2], C1 = 2Ip and
C2 = diag[1, 5, 1p−2], where p = 128, n = 512 and with number of test samples ntest = 512.
Empirical results obtained by averaging over 500 runs.
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