A Large Scale Analysis of Logistic Regression: Asymptotic Performance and New Insights

Xiaoyi Mai^{1,2}, Zhenyu Liao^{1,2}, Romain Couillet^{1,2}

¹LSS, CentraleSupélec, Université ParisSaclay, France. ²GIPSA-lab, Université Grenoble Alpes, France.

Abstract

• Objective: Quantitative study of logistic regression in modern regime of large dimensional, numerous data.

Approach: Combine flexibility of "leave-one-out" approach for handling implicit solutions and that of random matrix theory (RMT) for structured data models.

Results: Statistical distribution of learned parameters, dependent of training data.

Technical Approach

Key ideas: • Express c_i as function fo $\hat{\beta}_{-i}^{\mathsf{T}} \mathbf{x}_i$: $c_i = \psi \left(y_i \hat{\beta}^{\mathsf{T}} \mathbf{x}_i \right) \simeq \psi \left(y_i \hat{\beta}_{-i}^{\mathsf{T}} \mathbf{x}_i + \kappa c_i \right) \simeq \psi \left(\operatorname{prox}_{\kappa} (y_i \hat{\beta}_{-i}^{\mathsf{T}} \mathbf{x}_i) \right)$ where $\operatorname{prox}_{\kappa}(t) = \operatorname{argmin}_{z \in \mathbb{R}} \{ \kappa \rho(z) + (z - t)^2 / 2 \}$ for some scalar κ determined by RMT.

Demonstrate from

Preliminaries

Logistic Regression:

► Assumption of logic model: for some data vector $\mathbf{x} \in \mathbb{R}^p$ with class label $y = \pm 1$, $\exists \beta_* \in \mathbb{R}^p$ such that

$$P(\boldsymbol{y}|\boldsymbol{\mathbf{x}}) = \sigma(\boldsymbol{y}_i \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\mathbf{x}}_i)$$

where $\sigma(t) = \frac{1}{1+e^{-t}}$.

• Method: find estimate $\hat{\beta}$ of β_* by maximizing posterior probability $P(y|\mathbf{x})$ over training data set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, i.e.,

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \rho(\boldsymbol{y}_{i} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i})$$
(1)

with $\rho(t) = \ln(1 + e^{-t})$.

• Possibility of ill-defined (1): if $\exists \beta_s$ such that $y_i \beta_s^\top \mathbf{x}_i > 0$ for all i, then $\hat{\beta} = q \beta_s$ with $q = +\infty$.

Regularized version:

 $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \rho(\boldsymbol{y}_{i} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i}) + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^{2}, \quad \lambda > 0.$ (2)

the asymptotic normality of $\hat{\beta}$ by CLT and quasi-independence between $\psi\left(\operatorname{prox}_{\kappa}(y_{i}\hat{\beta}_{-i}^{\mathsf{T}}\mathbf{x}_{i})\right)\mathbf{x}_{i}$ and $\psi\left(\operatorname{prox}_{\kappa}(y_{j}\hat{\beta}_{-j}^{\mathsf{T}}\mathbf{x}_{j})\right)\mathbf{x}_{j}$, $i \neq j$.

 $\lambda \hat{\boldsymbol{\beta}} \simeq \frac{1}{2} \sum_{i}^{\prime\prime} \boldsymbol{y}_{i} \psi \left(\operatorname{prox}_{\kappa} (\boldsymbol{y}_{i} \hat{\boldsymbol{\beta}}_{-i}^{\mathsf{T}} \mathbf{x}_{i}) \right) \mathbf{x}_{i}$

Find statistical parameters (i.e., mean, covariance) of $\hat{\beta}$, by taking corresponding expectation on both sides of (3).

Main Results

Theorem (Distribution of $\hat{\beta}$) For $\hat{\beta}$ given by (2) $\|\hat{\beta} - \tilde{\beta}\| \to 0$ where $(\lambda \mathbf{I}_p + \tau \mathbf{C}) \tilde{\beta} \sim \mathcal{N}(\eta \mu, \gamma \mathbf{C}/n)$ with $(\eta, \gamma, \tau) \in \mathbb{R}^3_+$ given by $\eta = \mathbb{E}[\psi(\operatorname{prox}_{\kappa}(r))], \quad \gamma = \mathbb{E}[\psi^2(\operatorname{prox}_{\kappa}(r))], \quad \tau = \frac{\mathbb{E}[\psi(\operatorname{prox}_{\kappa}(r))(m-r)]}{\sigma^2}$ for some $r \sim \mathcal{N}(m, \sigma^2)$ with $m \equiv \eta \mu^{\mathsf{T}} (\lambda \mathbf{I}_p + \tau \mathbf{C})^{-1} \mu$ $\sigma^2 \equiv \eta^2 \mu^{\mathsf{T}} (\lambda \mathbf{I}_p + \tau \mathbf{C})^{-1} \mathbf{C} (\lambda \mathbf{I}_p + \tau \mathbf{C})^{-1} \mu + \gamma \frac{1}{n} \operatorname{tr} \left[(\lambda \mathbf{I}_p + \tau \mathbf{C})^{-1} \mathbf{C} \right]^2.$

i = 1

Logic Model under Normality:

Gaussian mixture: N(±µ, C) with balanced class priors.
 Verifying assumption:

$$P(y_i|\mathbf{x}_i) = \frac{P(y_i)P(\mathbf{x}_i|y_i)}{P(y_i)P(\mathbf{x}_i|y_i) + P(-y_i)P(\mathbf{x}_i|-y_i)}$$
$$= \frac{1}{1 + e^{2y_i\mu^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{x}_i}} = \sigma(y_i\beta_*^{\mathsf{T}}\mathbf{x}_i)$$

with $\beta_* = 2\mathbf{C}^{-1}\boldsymbol{\mu}$.

High dimensional setting:

At arbitrarily large p, $n/p \rightarrow \xi > 0$.
Non-trivial regime: $\|\mu\| = O(1), \|\mathbf{C}\| = O(1) \& \|\mathbf{C}^{-1}\| = O(1)$ w.r.t. p.

Technical Approach

Objective: asymptotic statistics of implicit solution

$$\lambda \hat{\boldsymbol{\beta}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{c}_{i} \boldsymbol{y}_{i} \mathbf{x}_{i}, \quad \boldsymbol{c}_{i} \equiv \psi(\boldsymbol{y}_{i} \hat{\boldsymbol{\beta}}^{\mathsf{T}} \mathbf{x}_{i})$$

where $\psi(t) \equiv -\frac{\partial \rho(t)}{\partial t} = \frac{1}{1+e^{t}}$.

Remarks:

- ► Test error: $P(y_i \beta_{-i}^T \mathbf{x}_i < 0) P(r < 0) \rightarrow 0.$
- Unregularized solutions unbiased in direction, but biased in scale.

 $\sim \gamma/\eta^2$, indicator of variability of $\hat{\beta}$, is minimized at $\lambda = +\infty$.

Special case with $\mathbf{C} = \mathbf{I}_p$: classification performance maximized at trivial solution with $\lambda = +\infty$, when $\hat{\boldsymbol{\beta}}$ proportional to $\frac{1}{n} \sum_{i=1}^{n} y_i \mathbf{X}_i$.

Numerical Validation

Figure: Comparison between $y_i \beta_{-i}^T \mathbf{x}_i$ and a Gaussian distribution $\mathcal{N}(m, \sigma^2)$ with $\boldsymbol{\mu} = [2, \mathbf{0}_{p-1}]$,

Main difficulty: intractable statistical behavior of c_i due to implicit dependence between $\hat{\beta}$ and \mathbf{x}_i .

Leave-one-out version:

ICASSP'19, Brighton, UK

$$\lambda \hat{\boldsymbol{\beta}}_{-i} = \frac{1}{n} \sum_{j \neq i} \psi(\boldsymbol{y}_j \hat{\boldsymbol{\beta}}_{-i}^{\mathsf{T}} \mathbf{x}_j) \boldsymbol{y}_j \mathbf{x}_j$$

Tractable leave-one-out error \(\heta_{-i}^{\mathsf{T}} \mathbf{x}_i\) since \(\heta_{-i}\) independent of \(\mathbf{x}_i\).
Approximation of \(\heta_: \| (\heta_{-i} - \heta_{\|} \| \rightarrow 0, and \(\heta_{-i}^{\mathsf{T}} \mathbf{x}_j - \heta_{|}^{\mathsf{T}} \mathbf{x}_j \rightarrow 0\) for \(j \neq i\).

 $C = I_p$, for $\lambda = 1$, p = 256 and n = 512.

Figure: Misclassification error as a function of λ , with $\mu = [1, 1, \mathbf{0}_{p-2}]$, $\mathbf{C}_1 = 2\mathbf{I}_p$ and $\mathbf{C}_2 = \text{diag}[1, 5, \mathbf{1}_{p-2}]$, where p = 128, n = 512 and with number of test samples $n_{\text{test}} = 512$. Empirical results obtained by averaging over 500 runs.

Email: {xiaoyi.mai, zhenyu.liao, romain.couillet}@12s.centralesupelec.fr