Revisiting and Improving Semi-Supervised Learning : A Large Dimensional Approach

Xiaoyi Mai^{1,2}, Romain Couillet^{1,2}

¹LSS, CentraleSupélec, Université ParisSaclay, France. ²GIPSA-lab, Université Grenoble Alpes, France.

Abstract

Semi-Supervised Learning (SSL) on Graphs: Learning a class-structured signal f from data graph and pre-labelled data.

Motivation: Failure of classical algorithms in large dimensional regime.

Main Result: Improved random-matrix inspired algorithm.

Preliminaries

Solution: Centering Regularization

Failure of Laplacian Regularization & Distance Concentration:

$$s_{[u]} = -L_{[ul]}^{(a)} f_{[l]} = (D^{-1-a} W D^{a})_{[ul]} f_{[l]}$$
$$f_{[u]} = L_{[uu]}^{(a)-1} s_{[u]} \simeq \left(I_{n_{[n]}} + \frac{1}{n_{[l]}} \mathbf{1}_{n_{[u]}} \mathbf{1}_{n_{[u]}}^{\mathsf{T}}\right) s_{[u]} \simeq s_{[u]} + \frac{1}{n_{[l]}} (\mathbf{1}_{n_{[u]}}^{\mathsf{T}} s_{[u]}) \mathbf{1}_{n_{[u]}}$$

Ineffective learning from unlabelled data subgraph $L_{[uu]}^{(a)}$

Regularization with Centered Similarity Matrix:

▶ Data $x_1, \ldots, x_n \in \mathbb{R}^p$ in \mathcal{C}_1 or \mathcal{C}_2 , seen as nodes in a graph. Data similarity matrix W. Usually,

 $W_{ii} = h(||x_i - x_i||^2) \ge 0$

for some decreasing function h.

Smoothness Assumption:

- W_{ij} large implies tendency for x_i , x_j in the same class.
- Sought-after class-structured signal f smooth wrt W, i.e., with small smoothness penalty:

$$\mathcal{Q}(f) = \sum_{i,j} W_{ij}(f_i - f_j)^2 = f^T (D - W)f = f^T L f.$$

Semi-Supervised Learning:

► $n_{[/]}$ labeled observations $\{(x_1, y_1), \ldots, (x_{n_{[/]}}, y_{n_{[/]}})\}$ with labels $y_i \in \{-1, 1\}$, and $n_{[u]}$ unlabeled samples $\{x_{n_{[i]}+1}, \ldots, x_n\}$. • Objective: f with small Q(f) & in accordance with labeled data.

Curse of Dimensionality:

 $\hat{W} = PWP$ with $P \equiv I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$

• Method: find $f_{[u]}$ with balanced $f_{[l]} = \left(I_{n_{[l]}} - \frac{1}{n_{[l]}} \mathbf{1}_{n_{[l]}} \mathbf{1}_{n_{[l]}} \mathbf{1}_{n_{[l]}} \mathbf{y}_{[l]}\right) y_{[l]}$ by minimizing smoothness penalty on \hat{W} , i.e., $\min_{f_{[u]} \in \mathbb{R}^{n_{[u]}}} \sum_{i,i} \hat{W}_{ij} (f_i - f_j)^2 = -f^{\mathsf{T}} \hat{W} f$ s.t. $\|f_{[u]}\|^2 = n_{[u]}e^2$ Solution: $\hat{f}_{[u]} = \left(\alpha I_{n_{[u]}} - \hat{W}_{[uu]} \right)^{-1} \hat{W}_{[ul]} f_{[l]}$ with $\alpha > \| \hat{W}_{[uu]} \|$

Advantages:

- $\blacktriangleright \hat{W}$ orthogonal to $\mathbf{1}_n$.
- Preserved difference between inter- and intra-class similarities. Balanced degrees as $\hat{d}_i = \sum_{i=1}^n \hat{W}_{ii} = 0$, for all *i*.

High Dimensional Performance: for $x_i \in C_k$ unlabelled, $\hat{f}_i = \hat{g}_i + o_p(1)$ where $\hat{g}_i \sim \mathcal{N}((-1)^k(1-\rho_k)\hat{m}, \hat{\sigma}_k^2)$ with $\hat{\sigma}_k^2/\hat{m}^2$ a decreasing function of both c_l and $c_{[u]}$ and $\lim_{\alpha\to+\infty}\hat{\sigma}_k^2/\hat{m}^2=\sigma_k^2/m^2.$

• Mixture model: $k \in \{1, 2\}, \mathbb{P}(x_i \in C_k) = \rho_k, x_i \in C_k \Leftrightarrow x_i \sim \mathcal{N}(\mu_k, C_k).$ Large data asymptotics: $\frac{n_{[l]}}{p} \rightarrow c_{[l]} > 0, \frac{n_{[u]}}{p} \rightarrow c_{[u]} > 0.$ Consequence of large p: distance concentration irrespective of

class (at non-trivial regime of μ_k, C_k),

$$\frac{1}{p}\|x_i-x_j\|^2 = \tau + o_p(1), \quad \tau \equiv \frac{1}{p}\operatorname{tr}(\rho_1 C_1 + \rho_2 C_2)$$

Semi-Supervised Laplacian Regularization

• Method: find $f_{[u]}$ by minimizing Q(f) with $f_{[l]} = y_{[l]}$, e.g., by solving $\min_{f\in\mathbb{R}^n} f^{\mathsf{T}}Lf \quad \text{s.t.} \quad f_i = y_i, \quad \mathbf{1} \leq i \leq n_{[\prime]}.$

• Solution:
$$f_{[u]} = -L_{[uu]}^{-1} L_{[u']} f_{[I]}$$

where $L = I - D^{-1} W = \begin{bmatrix} L_{[II]} & L_{[Iu]} \\ L_{[uI]} & L_{[uu]} \end{bmatrix}$ with $D = \text{diag} \{W1_n\}$.

• Generalized Laplacian: $L^{(\alpha)} = I - D^{-1-a}WD^{a}$.

Large Dimensional Behavior: for $x_i \in C_k$ unlabelled,

Consistent SSL for high dimensional data

Experimentation

Figure: Accuracy as a function of $c_{[u]}$ for Gaussian data with p = 80, $h(t) = e^{-t}$. Averaged over $50000/n_{[u]}$ iterations.

SNR = -5dB $SNR = +\infty dB$

$f_i = (c_{[i]}/c_0)(\rho_2 - \rho_1) + o_p(1)$

Consequence: All f_i have the same sign if $\rho_2 \neq \rho_1$. Amendment: Use balanced $f_{[/]} = \left(I_{n_{[/]}} - \frac{1}{n_{[/]}} \mathbf{1}_{n_{[/]}} \mathbf{1}_{n_{[/]}} \mathbf{1}_{n_{[/]}} \right) y_{[/]}$. $\sqrt{p}f_{i} = \eta(1+a)(trC_{2}-trC_{1})/\sqrt{p}+o_{p}(1)$ **Consequence:** All f_i have the same sign if $\operatorname{tr} C_1/\sqrt{p} \neq \operatorname{tr} C_2/\sqrt{p}$. Amendment: Take a = -1.

 $pf_i = g_i + o_p(1)$ where $g_i \sim \mathcal{N}((-1)^k(1-\rho_k)m, \sigma_k^2)$ with σ_k^2/m^2 a decreasing function of c_l , but independent of $c_{[u]}$.

Inconsistency wrt unlabeled data

SNR = -10dB

Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[u]}$ with $n_{[l]} = 10$, computed over 1000 random realizations.

ICASSP'19, Brighton, UK

Email: {xiaoyi.mai,romain.couillet}@12s.centralesupelec.fr