ENLLVM: Ensemble based Nonlinear Bayesian Filtering using Linear Latent Variable Models

Xiao Lin, Gabriel Terejanu, Department of Computer Science

www.UncertaintyQuantification.org

College of Computing and Informatics NIFA: 2017-67017-26167

Abstract

- Real-time nonlinear Bayesian filtering algorithms are overwhelmed by data volume, velocity and increasing complexity of computational models.
- Novel ensemble based nonlinear Bayesian filtering requires a small number of simulations and can be applied to high-dimensional systems in the presence of intractable likelihood functions.
- It uses linear latent projections to estimate the joint probability distribution between states, parameters, and observables using a mixture of Gaussian components generated by the reconstruction error for each ensemble member.

What do we want?

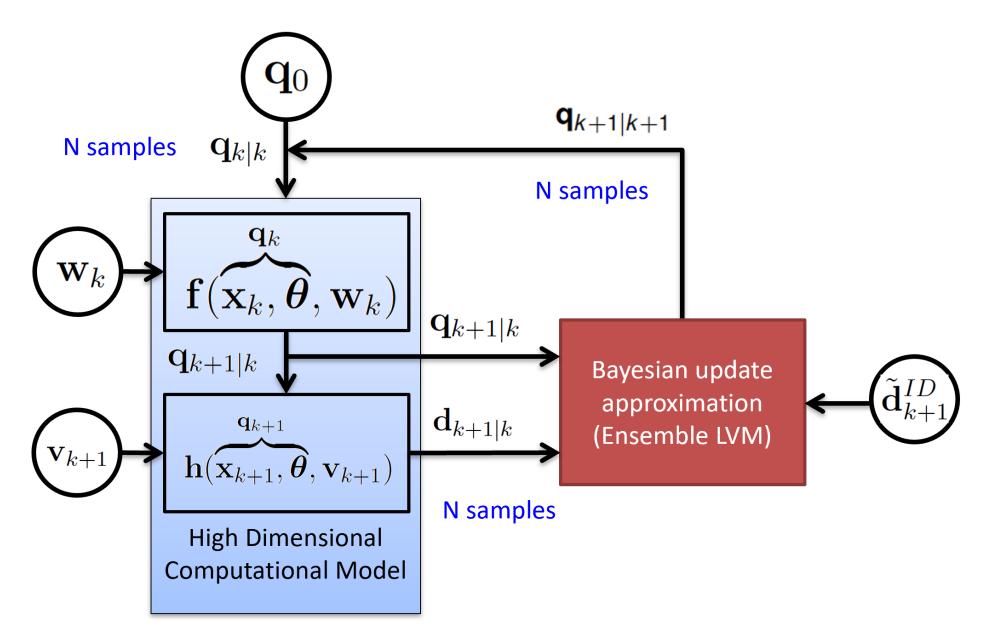
Nonlinear dynamical system

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{w}_k, \boldsymbol{\theta})$$
 $\mathbf{d}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{v}_k, \boldsymbol{\theta})$

Uncertain initial condition

$$\mathbf{x}_0 \sim p(\mathbf{x}_0)$$

heta \sim p(heta)



Goal - posterior pdf
$$p(\mathbf{x}_k, \theta \mid \mathbf{D}_k) = \frac{p(\tilde{\mathbf{d}}_k \mid \mathbf{x}_k, \theta, \mathbf{D}_{k-1}) p(\mathbf{x}_k, \theta \mid \mathbf{D}_{k-1})}{p(\tilde{\mathbf{d}}_k \mid \mathbf{D}_{k-1})}$$

Methodology

$$\mathbf{q}_{k+1|k}$$
 = $\mathbf{W}_{q}\mathbf{z} + \boldsymbol{\mu}_{q} + \boldsymbol{\eta}_{q}$
 $\mathbf{d}_{k+1|k}$ = $\mathbf{W}_{d}\mathbf{z} + \boldsymbol{\mu}_{d} + \boldsymbol{\eta}_{d}$
 $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_{MxM})$
 $\boldsymbol{\eta}_{q} \sim \mathcal{N}(0, \boldsymbol{\Psi}_{q})$
 $\boldsymbol{\eta}_{d} \sim \mathcal{N}(0, \boldsymbol{\alpha}\boldsymbol{\Psi}_{d})$
 $\boldsymbol{\alpha} > 1.0$



LLVM as a density estimator

$$p(\mathbf{q}_{k+1|k}, \mathbf{d}_{k+1|k}) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{WW}^T + \mathbf{\Psi})$$

Ensemble LLVM as density estimator

$$p(\mathbf{q}_{k+1|k}, \mathbf{d}_{k+1|k}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\mathbf{W}E[\mathbf{z}|\mathbf{q}_{k+1|k}^{i}, \mathbf{d}_{k+1|k}^{i}] + \boldsymbol{\mu}, \mathbf{W}Cov[\mathbf{z}|\mathbf{q}_{k+1|k}^{i}, \mathbf{d}_{k+1|k}^{i}]\mathbf{W}^{T} + \boldsymbol{\Psi})$$

LLVM and Ensemble LLVM provide the same estimate for the mean and covariance of the samples.

However Ensemble LLVM capture higher order statistics as compared with LLVM.

Finding the hyper-parameter α $\alpha = \operatorname{arg\,max} \mathcal{N}(\tilde{\mathbf{d}}_{k+1}; \boldsymbol{\mu}_d, \mathbf{W}_d \mathbf{W}_d^T + \boldsymbol{\alpha} \mathbf{\Psi}_d)$

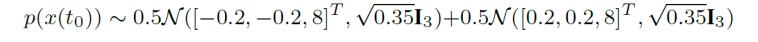
Numerical Results Lorenz 63

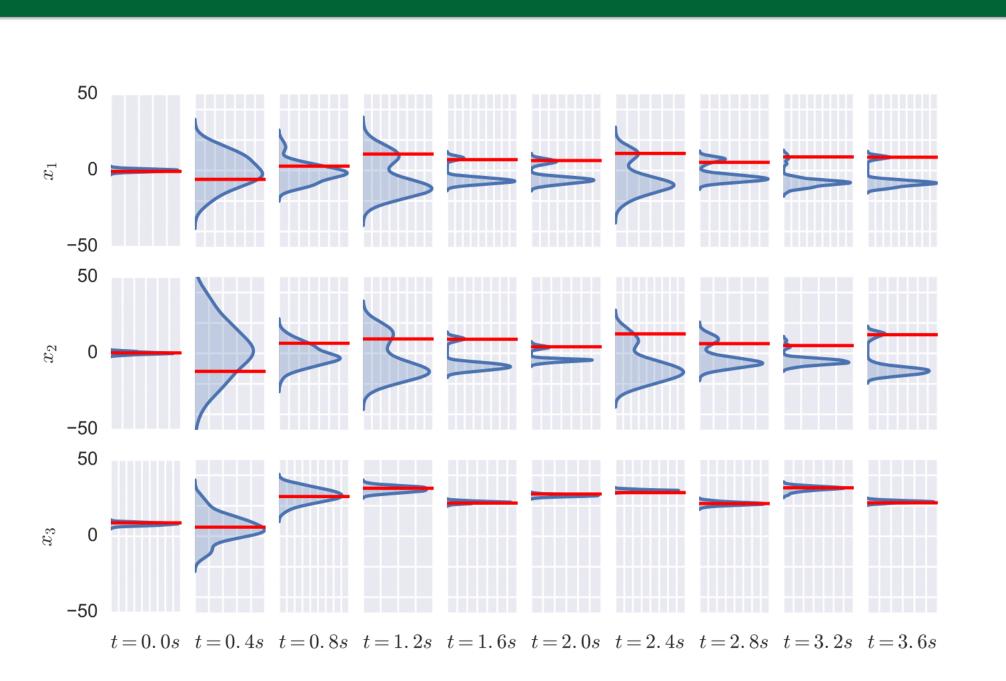
$$dx_{1}/dt = -cx_{1} + cx_{2}$$

$$dx_{2}/dt = -x_{1}x_{3} + rx_{1} - y_{2}$$

$$dx_{3}/dt = x_{1}x_{2} - bx_{3}$$

$$d_k = \sqrt{x_1(t_k)^2 + x_2(t_k)^2 + x_3(t_k)^2} + v_k, \ v_k \sim \mathcal{N}(0, 1)$$





Numerical Results - Lorenz 96

$$dx_j(t)/dt = (x_{j+1} - x_{j-2})x_{j-1} - x_j + 8, \ j = 1...40$$

Data generation process:

$$M1: dx_j(t)/dt = (x_{j+1} - x_{j-2})x_{j-1} - x_j + 9$$

$$M2: dx_j(t)/dt = (x_{j+1} - x_{j-2})x_{j-1} - x_j + 10$$

$$M3: dx_j(t)/dt = (x_{j+1} - x_{j-2})x_{j-1} - x_j + 11$$

$$M4: dx_{j}(t)/dt = (x_{j+1} - x_{j-2})x_{j-1} - x_{j} + 12$$

Linear measurement model:

$$d_j(t) = x_{2j-1}(t) + v_j(t), \quad v_j(t) \sim \mathcal{N}(0, I_{20})$$

Nonlinear measurement models:

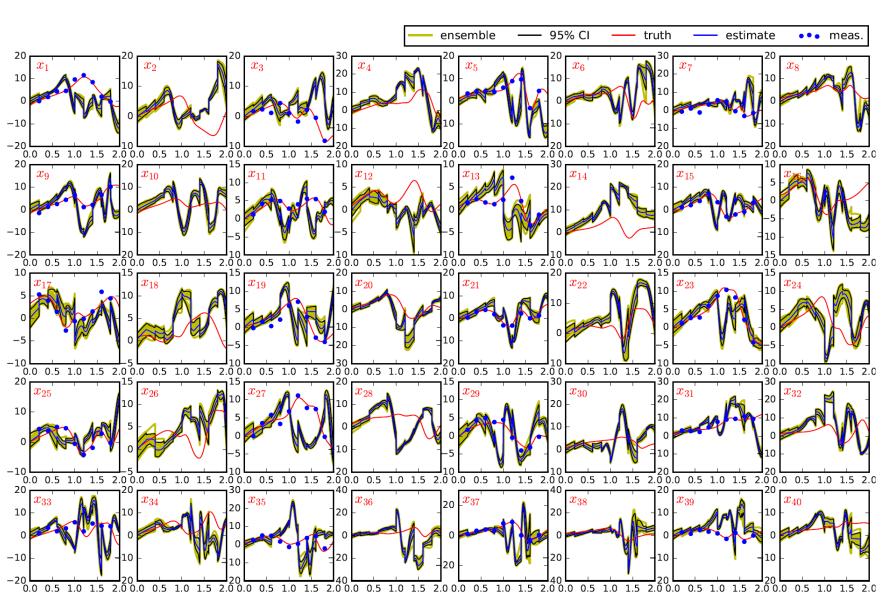
(I):
$$d_j(t) = x_{2j-1}(t)x_{2j}(t) + v_j(t), \quad v_j(t) \sim \mathcal{N}(0, I_{20})$$

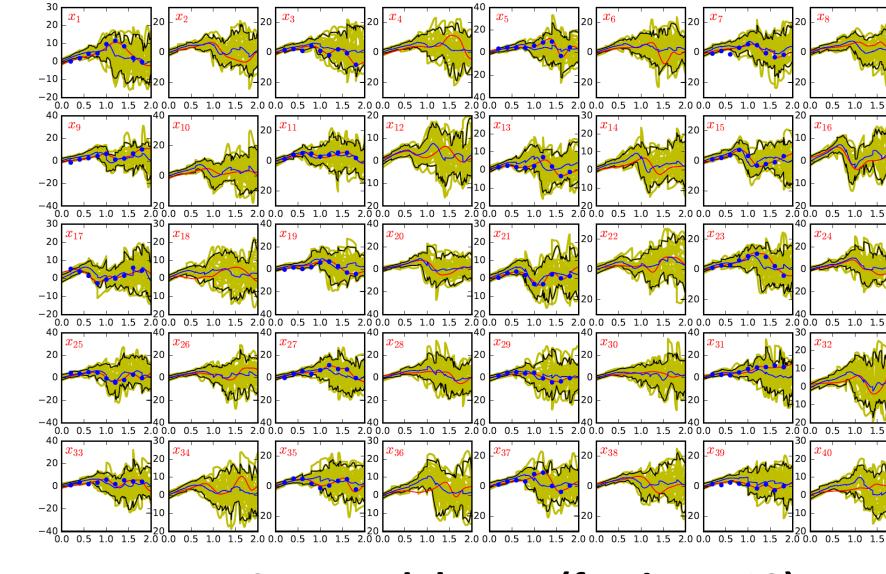
(II): $d_j(t) = x_{2j-1}(t)^2 + v_j(t), \quad v_j(t) \sim \mathcal{N}(0, I_{20})$

Table 1. EnKF vs EnPPCA: RMSE statistics of 100 trials

Model Error	EnKF		EnPPCA	
	Mean	STD	Mean	STD
Linear Measu	rement N	Model		
No err.	2.71	0.61	2.92	0.23
M1: 9	3.71	0.63	2.99	0.23
M2: 10	4.63	0.71	3.07	0.22
M3: 11	5.31	0.81	3.18	0.21
M4: 12	5.9	0.84	3.27	0.20
Nonlinear Me	asureme	nt Mod	el (I)	
No err.	1.87	0.53	2.85	0.26
M1: 9	3.3	0.63	2.91	0.22
M2: 10	4.37	0.47	3.02	0.21
M3: 11	5.01	0.44	3.17	0.17
M4: 12	5.51	0.49	3.32	0.17
Nonlinear Me	asureme	nt Mod	el (II)	
No err.	2.87	0.76	2.84	0.24
M1: 9	3.78	0.75	2.94	0.22
M2: 10	4.78	0.56	3.03	0.20
M3: 11	5.43	0.53	3.16	0.19
M4: 12	6.1	0.55	3.37	0.17

Joint space is 60 dimensional, only 30 samples are used and a latent space of dimension of 5.





EnPPCA - Model Error (forcing = 12)

- Model error lazy approach model uncertainty pushed into parameter/state uncertainty
- Model error intractable likelihood requires just simulations of forward model