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Spectral initialization Main theorem

System of quadratic equations

e Quadratic measurements obtained with high-rank measurement The left or right singular vector ~(0) of the following matrix:
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matrices arise in applications such as unassigned distance geometry When m > Cn for some sufficiently large constant C,

blem.
problem o There exists a choiceof 1 > v >0,1>p>0,a >0, 8> 0 such

that RC'(«, 3, p) holds on E(p) with high probability.

@ Furthermore, if the step size ) < n < 2 the gradient descent with
0)

® Most prior works focus on rank-1 psd measurement matrices or real

measurements. e For sufficiently large m, with high probability S concentrates around

its expectation in terms of spectral norm.

LS| = 2xx” (6)

e Measurement Model:

the spectral initializer ) converges linearly to x

dist (z(t), z) < (\ - - (11)

with high probability.

» The spectral initializer z!”) is close to a global optimum z [1,2].
dist(z", z) < §|z| (7)
holds with high probability.

ox € C" is the complex signal.

o1, € C is the i-th complex quadratic measurement.

o A, € C"" is the i-th complex random Gaussian measurement
matrix.
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Experimental results

_ Lemma
Problem formulation

using gradient descent:

We minimize the follows biective funct: | When m > Cn for some sufficiently large constant C', for all p,q € C" %3 o
e minimize the rollowing o iec;cllve unction f(z): satisfying |p|lo =1, ||q|| = 1 and every v > 0, the following ‘ém o,

s ) = O Er::

z)=—)> |27A;z —vy;|", 2 m = S

JB) = gl Ae 2 <v. (8)
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where 11 > 0 is the step size.

8 10 1 2 3 4
m/n

e Nonconvex optimization problem. Figure 2:Left: dist (z ,iB), Right: Phase transition of the success rate.
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e The distance between the recovered z and a global minimum Initia

solution x is
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Figure 3:Recovery of the UIUC logo.

o xel? is a global minimum solution for all ¢ € |0, 27). Original
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Figure 1:A good initialization is needed to solve a nonconvex optimization problem via



