

SPEAKER VERIFICATION

WHAT'S NEW

- A hybrid neural network structure using both TDNN and LSTM
- A multi-level pooling strategy to collect speaker information from both TDNN and LSTM layers
- A regularization scheme on the speaker embedding extraction layer to make the extracted embeddings suitable for the following fusion step

DATA

Test Sets

- NIST SRE16 eval set
- NIST SRE18 dev set (CMN2)
- **Training data sets:**
 - SRE data (2004-2006, 2008, and 2010), Switchboard, all Fisher data (1 & 2), all Voxceleb data
 - 13,564 hours data from 20,803 speakers
 - Data augmentation to deal with different noise conditions
- LDA/PLDA adaptation:
 - SRE16 unlabelled data is used for SRE16 LDA/PLDA adaptation;
 - SRE18 unlabelled data is employed for SRE18 LDA/PLDA adaptation.

DEEP SPEAKER EMBEDDING LEARNING WITH MULTI-LEVEL **POOLING FOR TEXT-INDEPENDENT SPEAKER VERIFICATION** ID AI RESEARCH

{YUN TANG, GUOHONG DING, JING HUANG, XIAODONG HE, BOWEN ZHOU }

KALDI X-VECTOR MODELS

X-vector Baseline

- Frame level: 3 TDNN layers
- Speaker Level: Statistic Pooling + 3 fully connected layers

EXPERIMENTAL SETUP

From X-vector model to multiple-level pooing model(MP)

Model	Model Configurations
x-vector	TDNN1-TDNN2-TDNN3-P
А	TDNN1-P-TDNN2-P-TDNN3-P
В	TDNN1-TDNN2-TDNN3-LSTM-P
MP	TDNN1-TDNN2-TDNN3-P-LSTM-P

Table 1: Experimental model configures

- 8kHz data, 40 dimensional filterbank feature + 3 pitch features
- Enrollment data varied from 10 to 60 seconds.

$$\mathcal{L} = -\sum_{i=1}^{M} \log \frac{\exp^{w_{c_i}^T x_i + b_{c_i}}}{\sum_j^N \exp^{w_j^T x_i + b_j}} + \lambda ||z_i||_2$$

• TDNN focuses on the local feature representation

• LSTM focuses on sequential and global feature representation.

• Multi-level pooling collects different level representations to model the target speaker • regularization on the embedding extraction layer helps to extract robust representation for the backend process.

Table 4: Evaluation results on the SRE18 (CMN2) dev

 set

 $0.001 | \mathbf{x}$

SRE16 RESULTS

$\lambda = 0$			$\lambda = 0.001$		
Pooled	Tag.	Can.	Pooled	Tag.	Can.
7.61	10.98	3.95	6.90	10.20	3.50
8.17	11.78	4.45	7.51	10.93	4.06
6.64	9.80	3.40	6.84	9.83	3.82
6.68	9.74	3.51	6.13	9.18	3.13

Table 2: Results on SRE16 eval test.

$\lambda = 0$		$\lambda =$	0.001
p = 0.01	p = 0.005	p = 0.01	p = 0.005
0.593	0.651	0.594	0.673
0.581	0.656	0.525	0.586
0.567	0.632	0.506	0.571

Table 3: DCF scores for SRE16 (pooled) test set

SRE18 RESULTS

nodel	EER	DCF(0.01)	DCF(0.005)
-vector	7.29	0.593	0.651
	7.90	0.581	0.656
1P	7.16	0.567	0.632
-vector	7.46	0.594	0.673
	7.77	0.525	0.586
ſP	6.61	0.506	0.571

• TDNN + LSTM helps to reduce EER by 12% in SRE16

• Regularization improves the verification performance on the backend

• Multiple-pooling from different sources gives the best results on both SRE16 and SRE18 test.