EMBEDDING PHYSICAL AUGMENTATION AND WAVELET SCATTERING TRANSFORM TO GENERATIVE ADVERSARIAL NETWORKS FOR AUDIO CLASSIFICATION WITH LIMITED TRAINING RESOURCES

Teh Kah Kuan & Tran Huy Dat

Acoustic, Speech and Language Department, Institute for Infocomm Research, A*STAR Singapore

BACKGROUND / MOTIVATION

>Current state-of-the-art deep learning requires huge amount of labeled data that comes with enormous costs.

>Problem is more serious with audio classification amid uncontrolled environment conditions.

>Building a robust audio classification engine with limited training resources is essential.

METHODOLOGY

The key idea is to train with augmented data.
 Physical augmentation (PA) - vocal tract length variations, speaking rate variations and far-field noisy simulations.
 Wavelet scattering transform (WST)- improve translation invariant and deformation stability of audio spectrogram images
 GAN – deep learning data generation: not stable with few training data.

Fig.1 Physical augmentation generation.

Approach

Embed physical modeling and wavelet scattering transform to GAN to improve its stability and generalization.

Multi-class labels are fed to the generator together with random noises to simulate training samples.
 Both augmented & generated data input to GAN's discriminator.

➢GAN is simultaneously optimized by two objective functions (binaryfake/no-fake & multiclass – classification task)

Improve the discriminator's translation invariance and deformation stability by replacing its first layers by wavelet filters.

Fig.2 The basic diagram of a 2-layers wavelet scattering transform as a first layer of the CNN classifier.

Fig.3 Overview of the proposed GAN integrated with physical augmentation and wavelet scattering transform.

RESULTS/BENCHMARKING

	Accuracy	
Method	10% (200	25% (450
	samples)	samples)
	training data	training data
No physical augmentation		
ResNet-18 (baseline)	62.06%	77.29%
WST + ResNet	78.42%	85.66%
GAN_ResNet	74.68%	83.95%
WST + GAN_ResNet	88.55%	90.30%
With physical augmentation		
ResNet-18	80.25%	89.44%
WST + ResNet	84.61%	89.91%
GAN_ResNet	85.39%	91.86%
WST + GAN_ResNet	91.96%	93.38%

Table 1 Experimental results comparing the classification accuracy of the baseline and proposed GAN system with limited training resource.

Experiments

- Using Google Speech Commands Dataset
 - 10 core command words were selected
 - Limited training resources (only use 10% or 25% of original respectively)
 - 10% or 25% of original, respectively)Full testing set of 2700 samples.
 - > No additional unlabeled data.
 - Network design
 - Audio samples are transformed into 32x32 normalized Mel-spectrogram.
 - Both generator (G) and discriminator
 (D) adopt the ResNet-18 architecture.
 - Morlet wavelet filters are used in WST.
- Results & discussions
 - Proposed method significantly improve classification accuracy with limited training resource.
 - Same accuracy level could be achieved with only 10-25% training data.
 - Physical augmentation & wavelet scattering greatly improve the GAN stability and performance.

SUMMARY

A novel GAN design which embeds physical augmentation and wavelet scattering transform is proposed and it shows very promising results of audio classification with limited training resources.

