Highlights

- Issues in multi-channel PIT based speech separation approaches:
- **Phase wrapping** in high frequency IPD features.
- **Spatial ambiguity** when speakers are closely located.
- Our contributions in this paper:
- For phase wrapping: a multi-band architecture for effective feature encoding in different sub-bands.
- For spatial ambiguity: a model that integrates the single-channel and multi-channel PIT models in utterance level.

MULTI-CHANNEL PIT

- Input Features:
- Spectral: Log Power Spectrum (LPS).
- Spatial: Interchannel Phase Difference (IPD).
- Model Structure:
- Similar as single-channel PIT

Figure 1: Conventional multi-channel PIT model

Lianwu Chen¹, Meng Yu², Dan Su¹, Dong Yu²

MULTI-BAND EMBEDDINGS

Phase wrapping issue

Figure 2: IPD pattern for microphone spacing 7cm.

• Effective feature encoding for different subbands with IPD and LPS.

Figure 3: Multi-band feature encoding for multi-channel PIT.

MODEL INTEGRATION

- Spatial ambiguity issue:
- IPD features fails when speakers are closely located.
- System cannot pursue balance between IPD and LPS.
- Train a classifier to detect spatial ambiguity case for hard switching.

Figure 4: The architecture of model integration.

Multi-Band PIT and Model Integration for Improved Multi-Channel

¹Tencent AI Lab, Shenzhen, China ²Tencent AI Lab, Bellevue, WA 98004, USA

 Table 1: Evaluation of different approaches in terms of SDR (dB) on test set.

Method	$0^{\circ} \sim 15^{\circ}$	$\sim 15^{\circ} \sim 45^{\circ}$	$\left 45^{\circ} \sim 90^{\circ}\right $	$90^{\circ} \sim 180$	• Avg.
raw	2.2	2.1	2.1	2.1	2.1
LPS^1	8.4	8.8	8.7	8.9	8.7
$LPS + 1 IPD (mic pair 1-2)^2$	8.2	8.8	9.1	9.9	9.1
LPS + 2 IPDs (mic pair 1-2, 1-4) 3	7.1	9.8	10.9	11.5	10.2
LPS + 3 IPDs (mic pair 1-4, 2-5, 3-6) 4	6.7	10.0	11.3	11.5	10.3
LPS + 6 IPDs (mic pair 1-4, 2-5, 3-6, 1-2, 3-4, 5-6) ⁵	5.6	9.4	11.0	11.6	9.9
LPS + 6 IPDs, two-band (6k Hz) ⁶	6.3	9.9	11.4	12.1	10.4
LPS $+$ 6 IPDs, two-band (4k Hz) ⁷	6.5	10.3	12.0	12.7	10.9
LPS $+$ 6 IPDs, two-band (2k Hz) ⁸	6.4	10.7	12.3	13.1	11.2
$LPS+6\ IPDs$, comparable model size 9	6.0	9.7	11.1	11.7	10.1
LPS $+$ 6 IPDs, four-band (2k/4k/6k Hz) ¹⁰	6.2	10.5	12.0	12.8	11.0
LPS, two-band (2k Hz) ¹¹	7.9	8.3	8.2	8.3	8.2
LPS $+$ 1 IPD, two-band (2k Hz) ¹²	7.0	9.4	11.0	12.1	10.3
LPS $+$ 2 IPDs, two-band (2k Hz) 13	6.1	10.0	11.6	12.6	10.6
LPS $+$ 3 IPDs, two-band (2k Hz) 14	6.3	10.4	12.1	12.6	10.9
LPS + 6 IPDs, two-band (2k Hz), multi-task 15	6.6	10.9	12.4	13.1	11.3
LPS + 6 IPDs, two-band (2k Hz), model integ. ¹⁶	8.3	10.7	11.9	12.6	11.2

Data & Architecture

• Corpora:

Mono Speech * Multi-channel Impulse Response

Table 2: Details of data set

Data	Description	
Speech	WSJ-2mix Train:30h, Dev:10h, Test:5h	
	Train:30h, Dev:10h, Test:5h	
	Image method	
	6-mic circular array of 7cm diam	
	3000 rooms	
	$RT_{60} 0.05$ s to 0.5s	
	Angel portion 1:2:2:2	

• Network setup:

The baseline PIT networks contain three LSTM layers, each with 512 units, followed by a MLP layer of 512 units and a output layer with 257×2 dimension mask. Phase sensitive approximation is used in loss function.

- Multi-band framework improves performance (Schemes 6-8 vs. 5), and 6 IPDs achieves better results than others (Schemes 8 vs. 12-14)
- (schemes 8 vs. 6-7), which is coincident with the phase wrapping frequency 2.5kHz.
- The EER of frame-level spatial overlapping prediction is about 8%.
- With model integration (scheme 16), the spatial overlapping issue is resolved with results in category $0^{\circ} \sim 15^{\circ}$ significantly improved.

Results & Conclusion

 Spatial overlapping cases can be observed in category $0^{\circ} \sim 15^{\circ}$ (schemes 1 vs. 2-5)

• Splitting at 2kHz leads to the best result

Tencent Al Lab