SAM-P1.10: Sparsity, Super-Resolution and Imaging

Damage indices model: y = LxProblem: Estimation of discrete map \mathbf{x}

Central Idea: Map is **Block-sparse**

Sparsity: Anomaly area \ll overall structural area Clusters: Anomalies occupy continuous regions Challenge: Unknown block boundaries

Anomaly Imaging For Structural Health Monitoring Exploiting Clustered Sparsity

Geethu Joseph[†]

Ahmad Zoubi * Chandra R. Murthy[†] V. John Mathews* [†] Dept. of ECE, Indian Institute of Science, Bangalore, India * School of Electrical Engineering and Computer Science, Oregon State University, OR, USA

Mapping Algorithm: Pattern-coupled Sparse **Bayesian Learning**¹

$$\mathbf{x} \sim \mathcal{N}(0, \operatorname{diag}\left\{\gamma\right\}) \qquad \gamma_i^{-1} = \alpha_i + \beta \sum_{i \in \mathcal{B}(i)} \alpha_i$$

¹ J. Fang, et al., "Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals," IEEE Trans. Signal Process., Jan. 2015

Experimental Results

Financial Assistance

