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Summary
➢ A foreground speech detector with no a priori knowledge of 

speaker characteristics was designed using a limited set of 
audio features
➢ One use case of speaking activity estimates derived from 

foreground activity elaborated
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➢ VGG-slim [2], state of the art CNN 
architecture for audio event detection

➢ Modified VGG-slim arch: 
“reduced” version of VGG slim

~50% reduction in number of 
parameters wrt VGG-slim

Fig : VGG-slimmer

Experimental	Setup
Ø Speech foreground (FG) detector designed for a wearable 

audio recording 

Ø Data collected using “privacy-preserving” audio-badges [1]

Ø Designed for a sensitive environment
- no raw audio, limited audio features
- no a priori information on speaker characteristics

Network	Architecture
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Datasets
➢ ICSI - Public audio dataset [3]

a generic, multi-party meetings based corpus

➢ SMC – In house data collected using [1]

➢ TILES (IARPA-MOSAIC [4]):
○ multimodal sensory data 
○ to study overall health, personality, affect 
○ clinical population at the USC Keck Hospital
○ self reports on positive, negative affect, stress, anxiety
○ Longitudinal study (10 weeks), N ~ 200

REFERENCES

[1] Tiantian Feng, Amrutha Nadarajan, Colin Vaz, Brandon Booth, and Shrikanth Narayanan, “Tiles audio 
recorder: an unobtrusive wearable solution to track audio activity,” in Proceedings of the 4th ACM Workshop 
on Wearable Systems and Applications. ACM, 2018, pp. 33–38

[2] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing Moore, 
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al., “Cnn architectures for large-scale audio 
classification,” in ICASSP, 2017, pp. 131–135

[3 Adam Janin et al., “The icsi meeting corpus,” In Acoustics, Speech, and Signal Processing, 2003. 
Proceedings.(ICASSP’03). 2003 IEEE International Conference on IEEE, 2003

[4] https://www.iarpa.gov/index.php/research-programs/mosaic

Performance	on	public/in-house	dataset

:

Use	case	for	foreground	activity	
Do speaking estimates explain positive and negative 
affect?
Linear Mixed Effects model with positive/negative affect as 
outcome
Ø Null model :

• subject as a fixed effect
• controlling for gender

Ø Alternate model : Foreground Activity (FGA) as an 
additional variable

• For positive affect: LME with FGA performed better than 
the null model (χ2 ≈ 7.5, p < 0.05)

• For negative affect: LME with FGA did not perform better 
than the null model (χ2 ≈ 1.4, p > 0.05)

➢ Trained on class balanced ICSI corpus 
➢ Validate/test/fine tune on in-house dataset 

(unseen speaker k-fold)
➢ Features: 14 MFCCs (+first, second deltas), pitch, intensity, 

loudness, voicing probability, RMS energy, zero crossing rate

Training/fine-tuning

➢ Foreground Speech: Speech from person of interest (POI)
here POI is the person wearing audio badge

➢ vs Speech Activity Detector : Any speech (including cross talk) 

Foreground	Definition
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