

Background & Motivation

• Speech Emotion Recognition:

- -Extracting the emotional state of a speaker from his or her speech;
- -In this study, we consider categorical representations (i.e., happiness, sadness, anger, etc.) for utterance-level speech emotion recognition.
- Application:
- Human machine interaction (HCI);
- Monitoring, control and psychological consultations.

• Standard Framework:

- -Extraction of emotion-specific features;
- -Decision making based on the extracted features.
- Contributions:
- -Investigate three hidden Markov model (HMM) based architectures for utterance-level speech emotion recognition;
- Propose to improve the emotion recognition rate by incorporating various advanced techniques from the automatic speech recognition area.

The HMM based Architectures for Speech Emotion Recognition

Figure 1: The Hidden Markov Generation Model

• Hidden Markov Model (HMM):

- An HMM is a generative model in which the system being modeled is assumed to be a Markov process with hidden states (Fig. 1);
- In this work, we develop C HMMs $\{\lambda_c, (c = 1, ..., C)\}$ for C discrete emotions, where C varies among database;
- -For an unknown input speech utterance O, it is assigned to the emotion label

$$c^* = \underset{1 \le c \le C}{\operatorname{argmax}} P(\mathbf{O}|\lambda_{\mathbf{c}}) \tag{(4)}$$

where $P(\mathbf{O}|\lambda_{\mathbf{c}})$ is calculated using the Viterbi algorithm.

• GMM-HMM Based Speech Emotion Recognition:

- In GMM-HMM, the observation function for the HMM state s_i is defined as a weighted sum of M_i multivariate Gaussian functions:

$$b_i(\mathbf{o}_t) = P(\mathbf{o}_t | q_t = s_i) = \sum_{l=1}^{M_i} \omega_{il} \mathcal{N}(\mathbf{o}_t | \boldsymbol{\mu}_{il}, \boldsymbol{\Sigma}_{il})$$
(7)

where $\mathcal{N}(\mathbf{o}_t | \boldsymbol{\mu}_{il}, \boldsymbol{\Sigma}_{il})$ is a Gaussian component with mean vector $\boldsymbol{\mu}_{il}$ and covariance matrix Σ_{il} . For a feature vector \mathbf{o}_t of dimension n:

$$\mathcal{N}(\mathbf{o}_t | \boldsymbol{\mu}_{il}, \boldsymbol{\Sigma}_{il}) = \frac{exp\{-\frac{1}{2}(\mathbf{o}_t - \boldsymbol{\mu}_{il})^T \boldsymbol{\Sigma}_{il}^{-1} (\mathbf{o}_t - \boldsymbol{\mu}_{il})\}}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}_{il}|}}$$
(

 ω_{il} denotes the mixture weight of Gaussian component l of state s_i , and the weights are subject to $\sum_{l=1}^{M_i} \omega_{il} = 1$.

Revisiting Hidden Markov Models for Speech Emotion Recognition

Shuiyang Mao[†], Dehua Tao, Guangyan Zhang, P. C. Ching and Tan Lee

Department of Elec. Eng., The Chinese University of Hong Kong, Hong Kong SAR, China E-mail: [†]symao@ee.cuhk.edu.hk

• SGMM-HMM Based Speech Emotion Recognition:

– Drawbacks of GMM-HMM: Involves training a completely separate GMM in each HMM state, which might suffer from over-fitting;

- In SGMM-HMM, the covariance matrix for each GMM component is shared between states, whereas the mean and mixture weights are allowed to vary in a subspace of the full parameter space, thus providing a more compact model representation;
- The observation function for a SGMM-HMM at some state s_i has the following form:

$$b_i(\mathbf{o}_t) = P(\mathbf{o}_t | q_t = s_i) = \sum_{l=1}^M \omega_{il} \mathcal{N}(\mathbf{o}_t | \boldsymbol{\mu}_{il}, \boldsymbol{\Sigma}_l)$$
(4)

where μ_{il} is computed using linear subspace projection matrix \mathbf{M}_l and projection vector \mathbf{v}_i for the state s_i :

$$\boldsymbol{\mu}_{il} = \mathbf{m}_l + \mathbf{M}_l \mathbf{v}_i \tag{5}$$

and the mixture weight ω_{il} is computed from linear subspace projection vector \mathbf{w}_l and the same sate-dependent projection vector \mathbf{v}_i :

$$\omega_{il} = \frac{exp\{\mathbf{w}_l^T \mathbf{v}_i\}}{\sum_{j=1}^M exp\{\mathbf{w}_j^T \mathbf{v}_i\}}$$
(6)

• **DNN-HMM Based Speech Emotion Recognition:**

- Drawbacks of GMM-HMM and SGMM-HMM: Statistically inefficient to model non-linear data in the feature space;

- In DNN-HMM, the GMMs (or SGMMs) are replaced with DNN to estimate the observation probabilities of input acoustic features at each HMM state;
- -All of the training utterances, combined with their labeled state sequence which are generated from GMM-HMM or SGMM-HMM alignment, are fed as inputs to train the DNN;
- The outputs of the DNN are the posterior probabilities of the $C \times Q$ output units, with C and Q denoting the emotion class number and HMM state number, respectively;
- -According to the Bayesian theorem, the observation probability $p(\mathbf{o}_t | q_t)$ is calculated as follows:

$$p(\mathbf{o}_t | q_t) = \frac{p(q_t | \mathbf{o}_t) p(\mathbf{o}_t)}{p(q_t)}$$
(7)

where $p(q_t)$ is estimated from an initial state-level alignment of the training set; and $p(\mathbf{o}_t)$ is independent of the state sequence, and thus can be ignored.

Speech Corpora

• Three corpora of acted emotions are used to evaluate the validity and universality of our approach: a Chinese emotional corpus (CA-SIA), a German emotional corpus (Emo-DB), and an English emotional database (IEMOCAP), which are summarized in Fig. 2.

Corpora	Language	#Utterance	#Subjects	#Emotion
CASIA	Chinese	7,200	4 (2 female)	6
Emo-DB	German	420	10 (5 female)	5
IEMOCAP	English	5,347	10 (5 female)	4

Figure 2: Overview of the selected emotion corpora. (#Utterance: number of utterances used, #Subjects: number of subjects, and #Emotion: number of emotions involved.)

(2)

	Speaker-dependent				Speaker-independent							
	CASIA		Emo-DB		IEMOCAP		CASIA		Emo-DB		IEMOCAP	
	UA [%]	WA [%]	UA [%]	WA [%]	UA [%]	WA [%]	UA [%]	WA [%]	UA [%]	WA [%]	UA [%]	WA [%]
(1) GMM-HMM	76.60	76.60	77.45	82.14	61.59	59.59	44.31	44.31	85.02	86.43	57.65	53.00
(2) GMM-HMM(ST)	79.93	79.93	81.15	83.33	63.51	61.93	46.33	46.33	86.15	87.38	59.54	53.80
(3) GMM-HMM(ST+SAT)	83.26	83.26	83.95	85.71	64.33	63.33	50.44	50.44	85.50	87.38	60.25	55.00
(4) SGMM-HMM	86.88	86.88	88.25	90.48	66.63	64.83	53.81	53.81	86.23	87.62	61.77	56.40
(5) SGMM-HMM(MMI)	87.50	87.50	_	_	66.94	65.86	52.69	52.69		_	62.23	57.20
(6) DNN-HMM(GMM-Ali.)	90.74	90.74	64.38	69.56	65.20	64.66	38.35	38.35	64.69	65.28	57.12	60.13
(7) DNN-HMM(SGMM-Ali.)	91.32	91.32	64.60	71.43	65.12	64.17	39.40	39.40	64.71	67.38	58.02	62.28

Figure 3: Comparison of unweighted accuracy and weighted accuracy on different HMM based architectures on CASIA corpus, Emo-DB corpus and IEMOCAP database, respectively. (ST: HMM state tying, SAT: speaker adaptive training, MMI: sequential discriminative training with maximum mutual information criterion, GMM (SGMM) - Ali.: alignment generated from monophone GMM-HMM (SGMM-HMM))

Experimental Settings

• Acoustic Features:

– 15-dimensional MFCCs with the first- and second-order derivatives + pitch + voicing probability.

• DNN Architecture:

- -One input layer, three hidden layers with 256 neurons per layer, followed by one softmax loss layer;
- A hyperbolic tangent non-linearity is applied between two consecutive hidden layers.

• DNN Training:

- Frame classification training is based on mini-batch Stochastic Gradient Descent, optimizing frame cross-entropy;
- The initial learning rate of 0.015 is gradually decreased to 0.002 after 20 epochs.
- Both speaker-dependent (SD) and speaker-independent (SI) scenarios are considered:
- SD: Randomly select 80% as the training set, 10% as the validation set and the rest 10% as the test set;
- -SI: K-folds leave-one-speaker-out cross-validation, where K denotes the number of speakers in each database.

Results & Analysis

- Fig. 3 shows the performance comparison between different HMM based systems on three corpora;
- Comparison of recognition accuracy on CASIA. (Spk-Dep.: speakerdependent, and Spk-Indep.: speaker-independent.)

Methods for comparison	Spk-Dep. [%]	Spk-Indep. [%]
Sun et al. [1] (2015)	85.08	43.50
Wen et al. [2] (2017)		48.50
Liu et al. [3] (2018)	90.28	38.55
Our method		
GMM-HMM(ST+SAT)	83.26	50.44
SGMM-HMM	86.88	53.81
DNN-HMM(SGMM-Ali.)	91.32	39.40

Digital Signal Processing & Speech Technology @ EE.CUHK

• Comparison of weighted accuracy on Emo-DB for speaker-independent task. (#Emotion: number of emotions used in each experiment.)

Methods for comparison	#Emotion	W. Accuracy [%]
Li et al. [4] (2016)	4	86.38
Semwal et al. [5] (2017)	6	80.00
Wen et al. [2] (2017)	7	82.32
Our method		
GMM-HMM(ST+SAT)	5	87.38
SGMM-HMM	5	87.62
DNN-HMM(SGMM-Ali.)	5	67.38

• Comparison of unweighted accuracy and weighted accuracy on IEMO-CAP for speaker-independent task.

Methods for Comparison	U. Accuracy [%]	W. Accuracy [%]
Huang et al. [6] (2016)	49.96	59.33
Ma et al. [7] (2017)	62.54	57.85
Mirsamadi et al. [8] (2017)	58.80	$\boldsymbol{63.50}$
Luo et al. [9] (2018)	63.98	60.35
Our Method		
GMM-HMM(ST+SAT)	60.25	55.00
SGMM-HMM(MMI)	62.23	57.20
DNN-HMM(SGMM-Ali.)	58.02	62.28

References

[1] Y. Sun, G. Wen, and J. Wang, "Weighted spectral features based on local hu moments for speech emotion recognition," Biomed. Signal Process. Control, vol. 18, pp. 80-90, 2015.

[2] G. Wen, H. Li, J. Huang, D. Li, and E. Xun, "Random deep belief networks for recognizing emotions from speech signals," *Comput. Intell. Neurosci.*, vol. 2017, no. 2, pp. 1–9, 2017.

[3] Z. Liu, Q. Xie, M. Wu, W. Cao, Y. Mei, and J. Mao, "Speech emotion recognition based on an improved brain emotion learning model," Neurocomputing, vol. 309, pp. 145–156, 2018.

[4] X. Li and M. Akagi, "Multilingual speech emotion recognition system based on a three-layer model." in Proc. INTER-SPEECH, 2016, pp. 3608–3612.

[5] N. Semwal, A. Kumar, and S. Narayanan, "Automatic speech emotion detection system using multi-domain acoustic feature selection and classification models," in *Proc. ISBA*, 2017, pp. 1–6. [6] C. Huang and S. S. Narayanan, "Attention assisted discovery of sub-utterance structure in speech emotion recognition." in

Proc. INTERSPEECH, 2016, pp. 1387–1391. [7] X. Ma, Z. Wu, J. Jia, M. Xu, H. Meng, and L. Cai, "Speech emotion recognition with emotion-pair based framework con-

sidering emotion distribution information in dimensional emotion space," in *Proc. INTERSPEECH*, 2017, pp. 1238–1242. [8] S. Mirsamadi, E. Barsoum, and C. Zhang, "Automatic speech emotion recognition using recurrent neural networks with local attention," in Proc. ICASSP, 2017, pp. 2227–2231.

[9] D. Luo, Y. Zou, and D. Huang, "Investigation on joint representation learning for robust feature extraction in speech emotion recognition," in Proc. INTERSPEECH, 2018, pp. 152–156.