

Problem	An ordinal physical-model-based spatio- near occluding objects and image bound
Objective	A method for extracting the sound near of
Proposal	A guided filter is combined with the phys for extracting sound from optically meas

Optical measurement of sound

• Optical method can capture sound field without setting any measuring device inside the field. it is effective for measuring near the source of aerodynamic sound.

<PPSI>

- Multiple interference fringes can be obtained by a high-speed polarization camera.
- It can measure a time-varying sound field up to 750 kHz, in theory.

Experiments

<Simulation>

• Simulated noisy sound fields, with and without occluding objects, were spatially filtered by the proposed guided filter and conventional linear filter with four boundary conditions for comparison.

Filters	Ordinary liner filters (zero padding, symmetric copy,
	Proposed guided filter
SNRs of input images [dB]	-20, -10, 0, 10, 20

Guided-spatio-temporal filtering for extracting sound from optically measured images containing occluding objects

Risako Tanigawa, Kohei Yatabe, Yasuhiro Oikawa (Waseda University, Japan)

Physical-model-based spatio-temporal filtering

• By considering the Helmholtz equation, the solution can be approximated arbitrarily well by the plane wave.

whose radius is $k = \omega/c$.

k: wavenumber ω : angular frequency c: speed of sound • The spatio-temporal filterbank passes the spectrum related to sound and stop other parts.

• The performance of the spatio-temporal filterbank is degraded around the occluding objects and image boundaries because such artificial boundary is not considered in the conventional

Proposed method

• A guided filter is integrated into the spatio-temporal filterbank. • To do so, we consider the weighted least squares method:

 $\arg\min_{a_m, b_m} \sum_{m \in \mathbb{N}} w_{n,m} ((a_m G(n) + b_m - I_{in}(n))^2 + \lambda a_m^2).$

 a_m, b_m : some coefficients for the *m*th region \mathcal{W}_m : *m*th region of a sliding window $w_{n,m}$: weight $I_{\rm in}$: input image

n: index of the image pixel G: guidance image λ : regularization parameter

• The weight is decided according to the frequency of sound. • The guidance image is a binary mask of the occluding objects.

<Application to data measured by PPSI> • The proposed method was applied to three types of measured data (Fig. 6).

Speaker+hose: A sound field generated from a loudspeaker and a flow field blown from a hose. Whistle: A sound and flow field emitted from a whistle. Edge-tone: A sound and flow field generated by an edge-tone phenomenon.

• A guided-spatio-temporal filter is effective for extracting sound field with occluding objects captured by optical method.

• Future work includes application of the proposed method for physical investigation.

Smoothing does not occur because the kernel does not stretched over the edge of the mask.