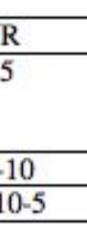

Deep Latent Factor Model for Predicting Drug Target Interactions Aanchal Mongia¹, Vidit jain¹, Emilie Chouzenoux² and Angshul Majumdar¹ Dept. of CS, IIIT-Delhi, ² CVN, Inria Sacley, CentraleSupélec


TABLE I: DATASET DESCRIPTION							
Datasets	NR	GPCR	IC	E			
Drugs	54 223		201	445			
Targets	26	95	204	664			
Interactions	90	635	1476	2926			
	•	•	•	- (5.			

Layers	E	GPCR	IC	NR
1 Layer / SVT / PMF / BMC	10	80	85	25
2 Layer	185-25	40-10	100-15	20-1
3 Layer	180-85-15	65-15-5	100-50-10	20-10

Dataset	1 Layer	2 Layer	3 Layer	SVT	BMC	PMF	GRMF
E	.639	.714	.728	.010	.706	.622	.498
GPCR	.599	.615	.616	.036	.604	.556	.442
IC	.792	.828	.828	.056	.803	.760	.381
NR	.097	.121	.125	.092	.107	.091	.097

		TABLEI	V: TABLE	E SHOWI	NG AUC		
Dataset	1	2	3	SVT	BMC	PMF	GRMF
2022-04602	Layer	Layer	Layer	12425-02-2	1000000	55050288	STATES STATES
Е	.877	.897	.899	.496	.879	.855	.573
GPCR	.870	.881	.884	.528	.876	.858	.561
IC	.928	.942	.941	.488	.931	.874	.628
NR	.634	.669	.669	.461	.639	.618	.456

- Evaluation metrics: AUC and AUPR
- Train:Test = 70:30% (done 10 times and average reported)

• On one hand, going deeper improves abstraction of the latent factors but on the other hand, the number of parameters to learn also increases. Owing to the second fact, over-fitting sets in, the algorithm fails to generalize on the unseen data

CONCLUSIONS

- This is the first work that shows how the drug target interaction can be decomposed into more than two factors and estimated via the product of individual factors.
- When the associated biological metadata of the drugs/targets is not available, our method yields the best possible results.
- The algorithm can be extended to other applications (CF, scRNA-seq imputation, etc) and can be modified to incorporate biological metadata associated with the drugs and targets.

1. Ezzat, Ali, Min Wu, Xiao-Li Li, and Chee-Keong Kwoh. "Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey." Briefings in bioinformatics (2018).

Angshul Majumdar Indraprastha Institute of Information Technology, Delhi India Contact : angshul@iiitd.ac.in

View

full paper at ps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8683123

LITERATURE Reference

CONTACT Information

