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ture maps can only be extracted from long recordings | | ,
containing many cardiac cycles.
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The proposed TF-ECNN classifier accepts combination

of 1D and 2D time-frequency features as inputs: Fig. 4. Visualization of feature maps of the convolutional layers of the 2D-CNN learned from MFCC inputs for
normal and abnormal heartbeats.
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We aim to classity normal and abnormal heart sounds
based on short-segments of individual heart beats (single
cardiac cycle)
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1. We propose a deep CNN for classification of pathol-
ogy in PCG of a single heart beat.

2. We design a new architecture called time-frequency :
ensemble CNN (TF-ECNN) that combines a 1D-CNN Feature Extraction v
and a 2D-CNN to learn multiple levels of represen- o
tations respectively from the time-domain raw PCG
signals and time-frequency MFCC features as inputs.

3. The proposed TF-ECNN shows improved classifica- || 1. 1D-CNN: accepts one-dimensional PCG time series
tion performance over strong state-of-the-art baseline data (i.e., the raw heartbeat signal)

classitiers and feature sets. 2. 2D-CNN: accepts two-dimensional time-frequency Results
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