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Motivation
Cardiac auscultation based on heart sound recordings or
phonocardiogram (PCG) is a primary screening tool for
diverse heart pathologies. Various algorithms have been
developed for automated classification of normal and ab-
normal PCGs [1].

Challenges:
1. Performance: The classification accuracy of current

methods is still far from being reliable for diagnostics
in clinical or non-clinical settings.

2. Noise: One major challenge is to extract robust and
discriminative features from the raw PCG recordings
typically corrupted by various noise sources.

3. Data length: Short-segment PCG classification is a
challenging task where most of the widely used fea-
ture maps can only be extracted from long recordings
containing many cardiac cycles.

Contributions
We aim to classify normal and abnormal heart sounds
based on short-segments of individual heart beats (single
cardiac cycle)

1. We propose a deep CNN for classification of pathol-
ogy in PCG of a single heart beat.

2. We design a new architecture called time-frequency
ensemble CNN (TF-ECNN) that combines a 1D-CNN
and a 2D-CNN to learn multiple levels of represen-
tations respectively from the time-domain raw PCG
signals and time-frequency MFCC features as inputs.

3. The proposed TF-ECNN shows improved classifica-
tion performance over strong state-of-the-art baseline
classifiers and feature sets.

Database
We evaluate our method on a large heart sound dataset
from PhysioNet CinC challenge 2016 [2]

Table 1 Distribution of train and test set
Train Test

normal abnormal normal abnormal
Recordings 1150 284 1150 288
Heartbeats 32574 8170 32582 8177
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Fig. 1 Overview of PCG classification system

Pre-processing and Segmentation
I Down-sampling of heart sound signals to 1000 Hz
I Band-pass filtering at 25 - 400 Hz to eliminate un-

wanted low-frequency artifacts (e.g., baseline drift)
and high-frequency noise (e.g., background noise)

I Normalization by mean subtraction and division by
its standard deviation

I Segmentation of each recording into individual
heartbeats (from beginning of atrial activity to end
of ventricular activity) based on expert annotations
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Fig. 2. Segmentation of PCG into cardiac cycles

Feature Extraction
The proposed TF-ECNN classifier accepts combination
of 1D and 2D time-frequency features as inputs:
1. 1D-CNN: accepts one-dimensional PCG time series

data (i.e., the raw heartbeat signal)
2. 2D-CNN: accepts two-dimensional time-frequency

feature maps of Mel-frequency cepstral coefficients
(MFCCs) and time-varying autoregressive (TV-AR)
coefficients
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Time-Frequency Ensemble CNN Classifier
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➢ ID-CNN

• Dropout = 0.4

• Learning Rate = 0.001031

• Batch Size = 128

• Optimizer = Adam

➢ 2D-CNN

• Dropout = 0.5

• Learning Rate = 0.000496

• Batch Size = 128

• Optimizer = Adam

Fig. 3. TF-ECNN model architecture combining 1D-CNN and 2D-CNN, with inputs of raw signals and time-
frequency feature maps, respectively. BN: Batch-normalization layer. ReLU: rectified linear unit activation function.

Hierarchical Time-Frequency Features
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Fig. 4. Visualization of feature maps of the convolutional layers of the 2D-CNN learned from MFCC inputs for
normal and abnormal heartbeats.

Results
Table 2. Performance comparison of different classifiers on the test set

Classifier Features Accuracy (%) Sensitivity (%) Specificity (%) MAcc (%)
SVM Time & Freq 84.87 (85.09) 85.82 (94.09) 81.09 (48.95) 83.46 (71.52)
Tree Ensemble Time & Freq 86.20 (86.23) 90.55 (94.25) 68.84 (54.26) 79.70 (74.26)
HMM MFCC 87.07 (n/a) 85.97 (n/a) 91.45 (n/a) 88.71 (n/a)

1D-CNN Raw (zero-pad) 86.34 (85.63) 87.80 (95.11) 80.32 (46.41) 84.06 (70.76)
Raw (norm-dur) 87.23 (87.52) 87.57 (91.51) 85.84 (71.64) 86.71 (81.58)

2D-CNN TVAR 86.41 (86.91) 88.85 (91.79) 76.69 (67.45) 82.77 (79.62)
MFCC 87.18 (89.30) 86.08 (92.49) 91.55 (76.61) 88.82 (84.55)

ECNN Raw (norm-dur) + MFCC 89.22 (89.58) 89.94 (93.07) 86.35 (75.68) 88.15 (84.37)
Numbers in parentheses correspond to performance before applying weight cost for imbalanced classes


