Institute of **Communication Systems Prof. Dr.-Ing. Peter Jax**

Matthias Schrammen, Stefan Kühl, Shmulik Markovich-Golan, Peter Jax

Introduction

- Single-channel • Application: Acoustic Echo Cancellation
- ► Example: hands-free call with AEC in mobile phone
- Combination of high SPL playback with small and cheap speakers leads to nonlinear distortion

• Goal: Use Nonlinear Acoustic Echo Cancellation

SPL: Sound pressure level, AEC: Acoustic echo cancellation, ERLE: Echo return loss enhancement

Acquisition of Realistic Echo Signals

- Evaluation based on simulated nonlinear echo signal not meaningful
- Construction of realistic smartphone mockup comprising Class D amplifier, smartphone loudspeaker and digital MEMS microphone
- Simultaneous playback of far-end signal and recording of microphone signal in studio booth $(T_{60} = 0.12 \,\mathrm{s})$
- Scenarios: Mockup on *desk* (a) and mockup on *microphone stand* (b)

(a) desk

Underlying Digital System Model

x(i) - $\rightarrow y(i)$

i: Discrete time index x(i): Far-end signal y(i): Microphone signal

• Odd order power series $T\{\cdot\}$ of order P with weights $w_p(i)$ models nonlinear amplifier and loudspeaker with memory of length $N_{\rm nl}$:

$$T\{x(i)\} = \sum_{l=0}^{\lfloor P/2 \rfloor} w_{2l+1}(i) * x^{2l+1}(i)$$

• Linear filter $h_{rir}(i)$ of length $N_{lin} \gg N_{nl}$ models transmission from loudspeaker to microphone:

$$y(i) = h_{\rm rir}(i) * T\{x(i)\}$$

Efficient Nonlinear Acoustic Echo Cancellation by Dual-stage Multi-channel Kalman Filtering

INVERSITY

- Cascaded structure mimics underlying system model • Filtering and adaptation is done in short-term Fourier domain - Segmentation and reconstruction with overlap-save (not shown) • Stage 1: Multi-channel Kalman filter (MCK) [1,2] - Filtered-x multi-channel nonlinear reference $\mathbf{X}_{\mathrm{FxMC}}(k)$ - Complexity reduction by reduced frequency resolution $(\downarrow D)$, see 6

- Stage 2: Single-channel Kalman filter

Evaluation on Measured Echo Signals 5

- Full-MCK [1]: Reference system with one multi-channel stage • Abrupt change of scenario simulated by switching from *desk* to *micro*-
- phone stand at $t = 10.5 \,\mathrm{s}$
- Proposed DualStage-MCK (D=1) with memory $(N_{nl}=15)$ outperforms DualStage-MCK without memory $(N_{nl}=1)$ and Full-MCK

Complexity Reduction

D: Decimation factor • Nonlinear memory is typically short, see **3** $-\hat{\boldsymbol{w}}_p(k)$ are short $\rightarrow \hat{\mathbf{W}}_p(k)$ are smooth - DFT of size M can be reduced to M' = M/D $\tilde{X}'_{\text{FxMC}}(\tilde{\mu}) = X'_{\text{FxMC}}(\tilde{\mu}D)$ for $\tilde{\mu} = 1, 2, \dots, M/(2D) - 1$ • Cyclic convolution without constraining typically introduces only weak artifacts in reference signals $\mathbf{X}_{\text{FxMC}}(k)$ and $\mathbf{X}_{\text{SC}}(k)$ - Constraining after application of complex weights can be omitted [3] $c_{\rm F}/c_{\rm lin}$ Decimation factor D• ERLE for the DualStage-MCK Complexity of DualStage-MCK $(N_{\rm nl} = 15)$ is not impaired by with D = 16 and without constraining is only 13% of the decimation and only slightly decreases without constraining complexity of Full-MCK. DFT: Discrete Fourier transform, $(\cdot)^*$: Constraining omitted C: Complexity, C_{DS} : DualStage-MCK, C_{lin} : linear AEC, C_{F} : Full-MCK

Conclusion

- Novel nonlinear echo canceller with dual-stage structure

- linear only AEC

References

- 181-185.

Speeds up convergence due to short filters with respect to Full-MCK ► Improves ERLE by modelling a nonlinearity with memory ► Allows for complexity reduction by reduced frequency resolution • Significant improvement of ERLE at only 69% higher complexity than

Attractive for real-time speech communication with mobile devices

[1] Sarmad Malik and Gerald Enzner, "State-space frequency-domain adaptive filtering for nonlinear acoustic echo cancellation," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 7, pp. 2065–2079, Sept. 2012. [2] S. Kühl, C. Antweiler, T. Hübschen, and P. Jax, "Kalman filter based stereo system identification with auto- and cross-decorrelation," in 2017 Hands-free Speech Communications and Microphone Arrays (HSCMA), Mar. 2017, pp.

[3] Jacob Benesty, Tomas Gänsler, Dennis R. Morgan, M. Mohan Sondhi, and Steven L. Gay, Advances in Network and Acoustic Echo Cancellation, Digital Signal Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.