

### Summary

**Sound Source Localization** (SSL) algorithms are affected by strong reverberation and echoes. We propose the MIRAGE concept that exploits echoes to answer the following questions:

- Can echoes be estimated from 2 microphones?
- Can these echoes be used for 2D-SSL with only 2 mic?

### Microphone Array SSL

The relationship between the *i*-th microphone's and the source's signals is  $m_i(t) = (h_i * s)(t) + n_i(t)$ 

where  $h_i(t)$  is the **Room Impulse Response** (RIR)[1] and  $n_i(t)$  is noise. The STFT of  $h_i(t)$  can be modelled as

$$H_i(f) = \sum_{k=1}^K \alpha_i^k(f) e^{-2\pi f \tau_i^k} + \varepsilon_i(f)$$

where

- $\triangleright \varepsilon_i(f)$  collects the reverberation tail and diffusion.
- $\blacktriangleright$  for each acoustics reflection (echo) k:



### 2-Channel 1D-SSL

The TDOA [2] between two microphones is computed as

$$\mathsf{TDOA} = \arg\max_{\tau} \Psi_{\mathsf{GCC}}(\tau)$$

where

$$\Psi_{\text{GCC}}(\tau) = \sum_{f,n} \frac{M_1(f,n) M_2^*(f,n)}{|M_1(f,n) M_2^*(f,n)|} e^{-2\pi f \tau}$$

is the GCC-PHAT *angular spectrum* [3]

### Multichannel 2D-SSL

When more microphones are available, 2D-SSL is possible [4]:

- 1. for each pair, a local set of angle of arrival s is defined;
- 3. local TDOAs are converted to DOAs on the global grid

# MIRAGE: 2D SSL using microphone pair augmentation with echoes

Diego Di Carlo<sup>1</sup>, Antoine Deleforge<sup>2</sup>, Nancy Bertin<sup>1</sup>

<sup>1</sup>Univ Rennes, Inria, CNRS, IRISA, France; <sup>2</sup>Unversité de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France

# **Microphone Array Augmentation with Echoes**



Contribution

Estimate time differences of interest (TDOA, iTDOA, TDOE) ► Use these quantities for 2D-SSL as in SRP-PHAT-like SSL

# **Echo Estimation**

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) - Brighton, UK 2019

### **Experimental evaluation**

# **Testing Data**:

- AWGN: 10 dB SNR (wn+n, sp+n).

**Aggregation:** modification of MBSSLocate[4] with 0.5 degree sphere sampling resolution,  $\theta = [-179, 180]$  and  $\phi = [0, 90]$  for DOA.

**Metrics:** normalized RMSE for TDOA estimation and mean angular error in  $^{\circ}$ and accuracies in % for DOA estimation with  $10^{\circ}$  and  $20^{\circ}$  angular tolerance.

### 1. Results for TDOA Estimation and 1D-SSL

|          |       | nRMSE |       |      | ACCURACY              |                       |
|----------|-------|-------|-------|------|-----------------------|-----------------------|
|          | Input | TDOA  | iTDOA | TDOE | $\theta < 10^{\circ}$ | $\theta < 20^{\circ}$ |
| MIRAGE   | wn    | 0.18  | 0.28  | 0.25 | 4.10 (77)             | 5.97 (97)             |
| MIRAGE   | wn+n  | 0.68  | 0.69  | 0.89 | 5.00 (26)             | 9.89 (54)             |
| MIRAGE   | sp    | 0.31  | 0.34  | 0.56 | 4.83 (63)             | 7.26 (82)             |
| MIRAGE   | sp+n  | 0.99  | 0.98  | 1.48 | 4.60 (16)             | 9.88 (35)             |
| GCC-PHAT | wn    | 0.21  | -     | -    | 4.22 (81)             | 6.19 (97)             |
| GCC-PHAT | wn+n  | 0.68  | -     | -    | 4.03 (65)             | 5.34 (83)             |
| GCC-PHAT | sp    | 0.32  | -     | -    | 4.08 (82)             | 5.34 (97)             |
| GCC-PHAT | sp+n  | 1.38  | -     | -    | 4.70 (19)             | 8.38 (32)             |
|          |       |       |       |      |                       |                       |

### 2. Results for 2D-SSL using MIRAGE

| DoA    |       | ACCU     | RACY         | ACCURACY       |           |
|--------|-------|----------|--------------|----------------|-----------|
|        |       | <        | $10^{\circ}$ | $< 20^{\circ}$ |           |
|        | Input | $\theta$ | $\phi$       | heta           | $\phi$    |
| MIRAGE | wn    | 4.5 (59) | 3.9 (71)     | 6.8 (79)       | 5.9 (88)  |
| MIRAGE | wn+n  | 4.4 (18) | 5.5 (26)     | 9.4 (35)       | 11.1 (66) |
| MIRAGE | sp    | 4.6 (45) | 4.8 (59)     | 8.1 (71)       | 7.2 (83)  |
| MIRAGE | sp+n  | 5.2 (17) | 5.9 (12)     | 10.7 (38)      | 12.3 (43) |

A simple echo model can be leveraged for 2D SSL with only two micro**phones** using simulated data of either noise or speech signals. Future research will focus on:

- Evaluation on real-data
- Extensions to more microphones

### References

- on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary, Canada, Apr. 15-20, pp. 6897–6901, 2018.
- [2] C. Knapp and G. Carter, "The generalized correlation method for estimation of time delay," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, pp. 320–327, aug 1976.
- no. 8, pp. 1950–1960, 2012.
- *Enhancement*, pp. 2–3, 2018.
- Speech and Signal Processing, ICASSP 2009, pp. 241–244, 2009.









200 simulated RIRs convolved with white noise (wn) and speech (sp)

► Speech utterance from the TIMIT dataset (from 1 s to 6 s)

### Conclusion

State-of-the-art models for more reliable estimation of angular spectra

[1] R. Scheibler, D. D. Carlo, A. Deleforge, and I. Dokmanic, "Separake: Source separation with a little help from echoes," in 2018 IEEE International Conference

[3] C. Blandin, A. Ozerov, and E. Vincent, "Multi-source TDOA estimation in reverberant audio using angular spectra and clustering," Signal Processing, vol. 92,

[4] R. Lebarbenchon, E. Camberlein, D. Carlo, A. Deleforge, and N. Bertin, "Evaluation of an open-source implementation of the SRP-PHAT algorithm within the 2018 LOCATA challenge," in 2018 IEEE-AASP Challenge on Acoustic Source Localization and Tracking (LOCATA), International Workshop on Acoustic Signal

[5] S. M. Schimmel, M. F. Muller, and N. Dillier, "A fast and accurate ashoeboxa room acoustics simulator," in IEEE International Conference on Acoustics,