CROSS-LINGUAL VOICE CONVERSION WITH BILINGUAL PHONETIC POSTERIORGRAM AND AVERAGE MODELING

Yi Zhou¹, Xiaohai Tian¹, Haihua Xu², Rohan Kumar Das¹ and Haizhou Li¹

¹Department of Electrical and Computer Engineering, National University of Singapore, Singapore ²Temasek Laboratories, Nanyang Technological University, Singapore

OBJECTIVE

This work presents the cross-lingual voice conversion approaches with:

bilingual Phonetic PosteriorGram (PPG) to represent speaker-independent features of speech signals from different languages in the same feature space.

• the average model to leverage both linguistic and acoustic information from other speakers in different languages, i-vector is used for network adaptation.

2. LIMITATIONS OF MONOLINGUAL PPG

Mismatched phonetic representation, inaccurate linguistic information

1. INTRODUCTION

In cross-lingual voice conversion, the source and target speakers speak in different languages.

Figure 1: An example to convert from an English source speaker to a Mandarin target speaker.

3. PROPOSED AVERAGE MODELING APPROACH WITH BILINGUAL PPG

Figure 3: (a) training and (b) conversion workflow of the proposed average modeling approach with bilingual PPGs.

4. EXPERIMENTS AND RESULTS

Database

 Table 1: Database used for experiments
. NЛ

	•	
Voice Conversion	VCC2016, VCC2018	Library of Average Model [1
ASR	Wall Street Journal (WSJ)	Aishell
	English	Mandarın

Subjective Evaluation for Cross-lingual Voice Conversion

ABX Speaker Similarity Test Result

System Descriptions

Table 2:	Experimental	systems a	and	training	data

	System	Training Data				
M-PPG	monolingual PPG baseline [2]	150 utterances				
B-PPG	proposed bilingual PPG	150 utterances				
R DDC ANAA	proposed average modeling	1500 utterances				
D-FFG-AIVIA	approach with bilingual PPG	5 English 5 Mandarin speakers				
Objective Evaluation for Intralingual Voice Conversion						

Table 3: MCD results for intralingual voice conversion

	M-PPG (EN)	M-PPG (CN)	B-PPG
N2EN	6.486	7.99	6.339
EN2CN	8.12	6.759	6.422

Converted Samples

MOS Quality Test Result

[1] http://www.data-baker.com/hc_pm_en.html

[2] L. Sun, H. Wang, S. Kang, K. Li, and H. Meng, "Personalized, cross-lingual TTS using phonetic posteriorgrams," in INTERSPEECH, pp. 322-326, 2016.