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OBJECTIVE

This work presents the cross-lingual voice conversion approaches with:
• bilingual Phonetic PosteriorGram (PPG) to represent speaker-independent
features of speech signals from different languages in the same feature space.

• the average model to leverage both linguistic and acoustic information from
other speakers in different languages, i-vector is used for network adaptation.

1. INTRODUCTION

In cross-lingual voice conversion, the source and target speakers speak in
different languages.

Source	English	Speaker Target	Mandarin	Speaker

Hi,	nice	to	meet	you! Hi,	nice	to	meet	you!Cross-lingual
Voice	Conversion

Figure 1: An example to convert from an English source speaker to a Mandarin target speaker.

2. LIMITATIONS OF MONOLINGUAL PPG

•Mismatched phonetic representation, inaccurate linguistic information

English	PPGs

[translation]:	"We	are	going	
overseas	for	honeymoon"

(a)	Training

(a)	Conversion

“我们要去国外度蜜⽉” English	ASR

English	ASR“I	followed	him”

English	PPGs

Figure 2: The monolingual PPG example converting Mandarin speech to an English speaker

3. PROPOSED AVERAGE MODELING APPROACH WITH BILINGUAL PPG

•Average Modeling Approach with Bilingual PPG
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Figure 3: (a) training and (b) conversion workflow of the proposed average modeling approach with bilingual PPGs.

4. EXPERIMENTS AND RESULTS

• Database
Table 1: Database used for experiments

English Mandarin
ASR Wall Street Journal (WSJ) Aishell

Voice Conversion VCC2016, VCC2018 Library of Average Model [1]
• System Descriptions

Table 2: Experimental systems and training data
System Training Data

M-PPG monolingual PPG baseline [2] 150 utterances
B-PPG proposed bilingual PPG 150 utterances

B-PPG-AMA proposed average modeling
approach with bilingual PPG

1500 utterances
5 English 5 Mandarin speakers

• Objective Evaluation for Intralingual Voice Conversion
Table 3: MCD results for intralingual voice conversion

M-PPG (EN) M-PPG (CN) B-PPG
EN2EN 6.486 7.99 6.339
CN2CN 8.12 6.759 6.422

Converted Samples

• Subjective Evaluation for Cross-lingual Voice Conversion
ABX Speaker Similarity Test Result
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Figure 4: ABX preference test results for speaker similarity

MOS Quality Test Result

Figure 5: MOS test results for quality and naturalness
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