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Introduction

We study downsampling and bandlimited interpolation for
bandlimited signals.
In signal processing books: the theoretical treatment of
downsampling and bandlimited interpolation is not given special
attention, despite their high importance in applications.
Conception: the bandlimited interpolation exists always.
We construct a bandlimited signal, which after downsampling does
not have a bounded bandlimited interpolation.
⇒ downsampling needs to be treated carefully

Motivation

‘‘Equivalence’’ between analog and digital world

Analog world Digital world

Sampling

Interpolation

Sampling: f(t)→ sampled signal is {xk}k∈Z = {f(k)}k∈Z

Downsampling: Process of reducing the sampling rate of a discrete-
time signal by removing samples.

{xk}k∈Z→ downsampled signal is {xdownk }k∈Z = {x2k}k∈Z

Bandlimited interpolation:
Find a signal fπ with bandwidth π
that interpolates the downsampled
signal {xdownk }k∈Z, i.e., satisfies:

fπ(k) = xdownk , k ∈ Z
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We study the existence of the bandlimited interpolation for sequences
that are created by downsampling a discrete-time signal that has been
generated by sampling a bandlimited signals.

Notation
Lp(R), 1 6 p 6∞: the usual Lp-spaces. `2(Z): set of all square summable sequences.
c0: set of all sequences that vanish at infinity. C∞0 [0,1]: space of all functions that have
continuous derivatives of all orders and are zero outside [0,1].
Bernstein space B

p
σ (σ > 0, 1 6 p 6 ∞): space of all functions of exponential type at

most σ, whose restriction to the real line is in Lp(R). Norm: Lp-norm on the real line.
A signal in B

p
σ is bandlimited to σ. B2

σ is the frequently used space of bandlimited
functions with bandwidth σ and finite energy. We call a signal in B∞π bounded
bandlimited signal. B∞σ,0: space of all functions in B∞σ that vanish at infinity.

Downsampling and Bandlimited Interpolation

Signals in B2
2π (bandlimited, finite energy)

f ∈ B2
2π is completely determined by its samples {f(k2)}k∈Z. We have
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Downsampling: We have {f(k2)}k∈Z ∈ `
2(Z) and

{xdownk }k∈Z = {f(k)}k∈Z ∈ `2(Z).
Bandlimited interpolation: fπ ∈ B2

π exists and is given by

fπ(t) =

∞∑
k=−∞ f(k)

sin(π(t − k))

π(t − k)
, t ∈ R.

For B2
2π downsampling and bandlimited interpolation are well-behaved.

Equivalence between continuous-time and discrete-time is preserved.

Signals in B∞2π,0 (bandlimited, bounded, vanish at infinity)

f ∈ B∞2π,0 is uniquely determined by its samples {f(k2)}k∈Z.
For all T > 0 we have

lim
N→∞ max

t∈[−T ,T]
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Downsampling: We have {f(k2)}k∈Z ∈ c0 and
{xdownk }k∈Z = {f(k)}k∈Z ∈ c0.

Question: Is there a continuous-time signal fπ ∈ B∞π that interpolates
{f(k)}k∈Z?

Distributional Behavior

In many books the bandlimited interpolation is formally obtained by
using a convolution theorem and distribution theory.
1. The discrete-time signal is created by multiplying f with a Dirac comb

fX(t) = f(t)·X(t) = f(t) ·
∞∑

k=−∞δ(t − k) =

∞∑
k=−∞f(k)δ(t − k).

2. The bandlimited interpolation is obtained by convolving fX with the
impulse response of the ideal low-pass filter

fπ(t) = (fX ∗ sinc)(t) =
∞∑

k=−∞ f(k)
sin(π(t − k))

π(t − k)
.

It is not clear whether the above manipulations and expressions are
always well-defined.

Another example where even the theory of distributions fails are convo-
lution sum system representations.
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Main Result

We use the signal

γδ(t) = e
iπt gδ(t)

where

gδ(t) =
1
π

∫ δπ
0

sin(ωt)

ω log(π
ω
)
dω.
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γδ is a bandpass signal that is created by modulating the lowpass
signal gδ.
The spectrum of the lowpass signal gδ is concentrated on [−δπ, δπ].
We have γδ ∈ B∞(1+δ)π,0 ⊂ B∞2π,0 (the effective bandwidth of γδ is 2δπ).

Theorem: Let δ ∈ (0,1). There exists no fπ ∈ B∞π with fπ(k) = γδ(k) for
all k ∈ Z. That is, there exists no bounded bandlimited interpolation for
the downsampled sequence {γδ(k)}k∈Z.

For the downsampled sequence {γδ(k)}k∈Z, the Shannon sampling series
diverges (even in a distributional setting).

Theorem: Let δ ∈ (0,1). Then, for all t ∈ R \ Z, we have

lim
N→∞
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π(t − k)
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Further, there exists a φ1 ∈ C∞0 [0,1] such that

lim
N→∞
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φ1(t) dt
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i.e., the series diverges in D ′.

Visualization of the divergence
of the Shannon sampling series.

(SNγδ)(t) =

N∑
k=−N

γδ(k)
sin(π(t − k))

π(t − k)
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It is well-known that there exist sequences that do not possess a
bounded bandlimited interpolation.
Example:

xk =

{
0, k 6 0,
(−1)k

log(1+k), k > 1.

Note: The situation here is more complicated. The sequence is not
freely chosen but obtained by downsampling of a bounded bandlimited
signal.
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