(.

D Tampere University

The Direction Cosine Matrix Algorithm In
Fixed-Point: Implementation and Analysis

Alexandre Meirhaeghe, Jani Boutellier and Jussi Collin
Faculty of Information Technology and Communication Sciences
Tampere University, Finland

Abstract

Inertial navigation allows tracking and updating the position and
orientation of a moving object based on accelerometer and
gyroscope data without external positioning aid, such as GPS.
herefore, inertial navigation is an essential technigue for, e.g.,
iIndoor positioning. As inertial navigation is based on integration of
acceleration vector components, computation errors accumulate
and make the position and orientation estimate drift. Even though
maximum computation precision Is desired, also efficiency needs
consideration In the age of Internet-of-Things, to enable
deployment of Inertial navigation based applications to the
smallest devices. This work formulates the Direction Cosine
Matrix update algorithm, a central component for Inertial
navigation, In fixed-point and analyzes its precision and
computation load compared to a reqgular floating-point
Implementation. The results show that the fixed-point version
maintains very high precision, while requiring no floating point
hardware for operation. The paper presents execution time
results on three very different embedded processors.

[Linear acceleration

R 7

Frame x, y, z

Y
Attitude ¥, -0, ®

Representation of the coordinate frame, the linear acceleration
and the attitude.

Algorithm 1 Direction Cosine Matrix algorithm

I: in = gyrodata (7,:)" * T

0 —1ns 1no-
2: Cq1 = ins 0 —1ing
—1no 111 0
3: CQ — Cl > Cl
4: p=Vvin' *in
5: out =14 Sinép) x Cq 4 1_0;28(13) * Co
6: DCM = DCM x* out

Algorithm 2 Direction Cosine Matrix algorithm 1n fixed point

I: in = gyrodata (i, :)’ Q6.26
0 —iIl3 iIlQ
2: C = ins 0 —1nq)6.26
—iIIQ iIl1 0
Ci11 xC13
+C12%xC16 Ci2 x Cyry Ci1 % Cys
3 Cy = Ci3 % Cqq
' Ci5xCi16 +C15xC17r Ci3%xCyo
Ci6 * Cio
Ci7 % Cys Ci6 * C11 Ci7 % Cys
010.22
4: p2 =ing xins + (in2 *in2 +iny *in;) >>1 Q10.22
5: P4 — P2 * P2 Q1913

264 246

6: Cff, = 231—|—((p4 % m) >>9 — po * 7) >> 7 Q1.31

7. Cffy = 231—|—((p4) 376;) >> 9 — py %) >> 8 Q0.32
3: C100 = 2 Q- 5.37
9: CyCfty = Co x Cfft2 x C100 Q3.29
10: out = Cq1 x Ctf{ + (CQCEQ) >> 3 Q6.26
11: out = I+ (out * C100) >> 2 Q1.31
12:. DCM = DCM x out 01.31
13: DCM = DCM 4 ZREM-DOM')-DCM Q1.31
160
Original Full-scale
140
120
100
30
60
40
20
0
Basic NN NN+P4 NN+P4+ReNorm

Accuracy of the results as signal-to-noise ratio (in dB scale).

Device

Achievable sample rate

Microchip ATmega 2560 (8-bit) 0.275 kilosamples/s
S1Five Freedom E310 (32-bit) 12.68 kilosamples/s
Qualcomm Hexagon 682 2148 kilosamples/s

Processing time results of NN+P4+Renorm on various platforms.

