

Abijith Jagannath Kamath Department of Electrical and Electronics Engineering National Institute of Technology Karnataka, Surathkal Email: kamath.abijith.j@ieee.org

1. Overview

- A finite-rate-of-innovation (FRI) model for closed contours using Fourier descriptors.
- Noise-robust estimation of Fourier descriptors (FDs) from partial measurements.
- Reconstruction of higher-order curves with $\mathcal{O}(N \log N)$ complexity.

2. Formulation

• For a closed contour $C : \{x(t), y(t)\}$, define $s(t) \triangleq x(t) + jy(t)$, such that:

$$s(t) = \sum_{k \in \mathbb{Z}} c_k \ e^{jkt}, \ 0 \le t < 2\pi, \ c_k \in \mathbb{C}.$$

• Uniform samples of the coordinate functions:

$$x(nT) = \sum_{k=-K}^{K} \alpha_{k} e^{jknT}, \quad y(nT) = \sum_{k=-K}^{K} \beta_{k} e^{jknT}$$

with $\alpha_k = \alpha_{-k}$ and $\beta_k = -\beta_{-k}$ such that $\alpha_k + \mathbf{j}\beta_k = c_k.$

• Problem: Given the noisy measurements $\{\tilde{x}(t_n), \tilde{y}(t_n)\}_{n=1}^N$, estimate $\{c_k\}_{k=-K}^K$.

FINITE RATE OF INNOVATION MODELLING OF FOURIER DESCRIPTORS

3. Parameter Estimation

- Estimation of T: Block Annihilation
 - Construct the convolution matrices X and **Y** from $\{\tilde{x}(nT)\}\$ and $\{\tilde{y}(nT)\}$.

- Find the filter **h** such that

$$\mathbf{h}^* = \arg\min_{\mathbf{h}} \left\| \begin{bmatrix} X \\ Y \end{bmatrix} \mathbf{h} \right\|_2^2, \text{ s. t. } \|\mathbf{h}\|_2^2 = 1$$

- Roots of the polynomial with the coefficients **h** are the estimates of $\{kT\}_{-K}^{K}$.
- Estimation of Fourier Descriptors: *FRI-FD*
 - The weights α_k , β_k are estimated as the using least squares solutions to $\mathbf{E}\alpha =$ $\tilde{\mathbf{x}}$ and $\mathbf{E}\beta = \tilde{\mathbf{y}}$, where \mathbf{E} is a Vandermonde matrix of complex exponentials given as:

$\begin{bmatrix} e^{-jKT} \\ e^{-j2KT} \end{bmatrix}$	•••	$e^{-jT} \\ e^{-j2T}$	1 1	$e^{jT} \\ e^{j2T}$	•••	$e^{\mathbf{j}KT}$ $e^{\mathbf{j}^{2KT}}$	
$\left\lfloor e^{-\mathbf{j}NKT} \right\rfloor$	•	\dot{i} e^{-jNT}	: 1	$\dot{e}^{\mathrm{j}NT}$	••••	$\vdots \\ e^{jNKT} \end{bmatrix}$	•

- Non-uniform samples are modelled as sampling jitter: $t_n = nT + \nu_n$, where $\nu_n \stackrel{\text{i.i.d}}{\sim} \mathcal{U}\left[-\frac{T}{2}, \frac{T}{2}\right].$

Sunil Rudresh and Chandra Sekhar Seelamantula Department of Electrical Engineering Indian Institute of Science, Bangalore Email: sunilr@iisc.ac.in, chandra.sekhar@ieee.org

4. Sampling Jitter and Denoising

• The corresponding uniform samples have random amplitude modulated weights:

$$x_u(nT) = x(t_n) = \sum_{k=-K}^{K} \alpha_k e^{j\nu_n} e^{jknT}.$$

• Curve-specific information is in the interval [-KT, KT].

• Convolution with an M-tap lowpass filter with cut-off frequency close to KT results in

$$(x_u * g)(nT) \approx \sum_{k=-K}^{K} G(kT) \alpha_k e^{jknT}.$$

• Design the denoising filter $\{g(n)\}_{n=1}^{M}$ such that $G(kT) \approx 1, -K \leq k \leq K$.

- A Tukey window with parameter 0.99 and $M = \left| \frac{2N}{3} \right|$ is used as the lowpass filter.

7. Application to Real Images

Figure 3: Outlining of (a)-(b) tumours in brain MR images and (c)-(d) different shapes reconstructed after Canny edge detection with model order Kand from N samples.

(b) K = 7, N = 31

(d) K = 25, N = 345

• Conference travel of Abijith Kamath has been funded by IEEE Bangalore Section and IEEE NITK Student Branch.

• Conference travel of Sunil Rudresh has been funded by SERB International Travel Allowance (ITA) and Pratiksha Trust, IISc.