3D Coprime Arrays in Sparse Sensing

Conghui Li^{1}, Lu Gan ${ }^{2}$, Cong Ling ${ }^{1}$
${ }^{1}$ Department of Electrical and Electronic Engineering Imperial College London
${ }^{2}$ College of Engineering, Design and Physical Sciences
Brunel University

ICASSP 2019

Introduction

A Brief Review of
Cubic Integers and Chinese Remainder

Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Table of Contents
ICASSP 2019
(1) Introduction
(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation
(5) Concluding Remarks

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Table of Contents

ICASSP 2019
(1) Introduction
(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation
(5) Concluding Remarks

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

DOA Estimation ${ }^{1}$

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Interferences between dense antennas.

[^0]
Examples of 1D Coprime Arrays

(a) The coprime array ${ }^{2}$. (b) The CACIS configuration ${ }^{3}$.
${ }^{2}$ P.P. Vaidyanathan and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573-586, Feb. 2011.
${ }^{3}$ S. Qin, Y. D. Zhang, and M.G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Process., vol. 63, pp. 1377-1390, Mar. 2015.

Examples of 2D Coprime Arrays ${ }^{2}$

(a) $\mathbf{M} \mathbf{n}_{1}$ and (b) $\mathbf{N} \mathbf{n}_{2}$ where $\mathbf{M}=[2,2 ;-1,5], \mathbf{N}=[1,2 ;-1,4], \mathbf{n}_{1}=\operatorname{FPD}(\mathbf{N})$, and $\mathbf{n}_{2}=\operatorname{FPD}(\mathbf{M})$.
${ }^{4}$ P.P. Vaidyanathan and P. Pal, Theory of sparse coprime sensing in multiple dimensions. IEEE Trans. Signal Process., vol. 59, no. 8, pp. 3592-3608, Aug. 2011.

Coprime Matrices

Definition 1 (Coprime Matrices)

Two integer matrices \mathbf{B}_{m} and \mathbf{B}_{n} are left coprime if and only if there exist integer matrices \mathbf{C} and \mathbf{D} such that

$$
\begin{equation*}
\mathbf{B}_{m} \mathbf{C}+\mathbf{B}_{n} \mathbf{D}=\mathbf{I} . \tag{1}
\end{equation*}
$$

Our Goal

Find a more general and systematic way of finding pairwise 3-by-3 coprime matrices.

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Table of Contents
ICASSP 2019

(1) Introduction

(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation
(5) Concluding Remarks

Cubic Integers

Definition 2 (Cubic Field)

A field extension of degree 3 over rational numbers \mathbb{Q}, i.e., it is a \mathbb{Q}-vector space of dimension three.
E.g. $\gamma=5+2 \sqrt[3]{12}+\sqrt[3]{12^{2}}$ is in the ring of integers of the cubic field $\mathbb{Q}(\sqrt[3]{12})$.
$a+b \sqrt[3]{12}+c \sqrt[3]{12^{2}}$ is an cubic integer in $\mathbb{Q}(\sqrt[3]{12})(a, b, c \in \mathbb{Z})$.

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Other algebraic integers include quadratic integers, which can be used for planar arrays ${ }^{5}$.
${ }^{5}$ C. Li, L. Gan and C. Ling, "Coprime sensing via Chinese remaindering over quadratic fields—Part I: Array designs," in IEEE Trans. Signal Process., vol. 67, no. 11, pp. 2898-2910, June 2019.

Integral Basis of Cubic Field

A pure cubic field K is a field extension of \mathbb{Q} in the form of $\mathbb{Q}(\sqrt[3]{r})$ where r is a non-unit cubic-free integer. An integral basis of $\mathbb{Q}(\theta)\left(\theta=\sqrt[3]{r}, r=a b^{2}\right)$ is

- if $r \not \equiv \pm 1(\bmod 9)$

$$
\begin{equation*}
\left\{1, \theta, \frac{\theta^{2}}{b}\right\}, \text { or } \tag{2}
\end{equation*}
$$

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

$$
\begin{equation*}
\left\{1, \theta, \frac{\theta^{2}+r \theta+b^{2}}{3 b}\right\} \tag{3}
\end{equation*}
$$

Representation Matrix of a Cubic Integer

By stacking the coefficients corresponding to basis (2), the matrix representation of $m=m_{1}+m_{2} \theta+m_{3} \frac{\theta^{2}}{b}$ is

$$
\mathbf{B}_{m}=\left(\begin{array}{ccc}
m_{1} & m_{2} & m_{3} \tag{4}\\
m_{3} a b & m_{1} & m_{2} b \\
m_{2} a b & m_{3} a & m_{1}
\end{array}\right)
$$

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

$$
\mathbf{B}_{\gamma}=\left(\begin{array}{ccc}
5 & 2 & 2 \tag{5}\\
12 & 5 & 4 \\
12 & 6 & 5
\end{array}\right)
$$

Review of Chinese Remainder Theorem

If \mathcal{I} and \mathcal{J} are coprime, the Chinese Remaindering Theorem asserts that:

$$
\begin{equation*}
R / \mathcal{I} \mathcal{J} \simeq R / \mathcal{I} \times R / \mathcal{J} \tag{6}
\end{equation*}
$$

For all $a_{k} \in R / \mathcal{I}$ and $b_{j} \in R / \mathcal{J}$, it can be verified that every pair $\left(a_{k}, b_{j}\right)$ forms the solution

$$
\begin{equation*}
z \equiv x_{k} b_{j}+y_{j} a_{k} \quad(\bmod \mathcal{I} \mathcal{J}) \tag{7}
\end{equation*}
$$

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks
where $x_{k} \in \mathcal{I}$ and $y_{j} \in \mathcal{J}$.
Eg. $R=\mathbb{Z}$ and $\mathcal{I}=\langle 3\rangle=3 \mathbb{Z}= \pm 3, \pm 6 \cdots$. Let $\mathcal{J}=\langle 5\rangle$, thus
$z \equiv x_{k} b_{j}+y_{j} a_{k}(\bmod 15)$, where $x_{k} \in\langle 3\rangle, b_{j}=\mathbb{Z} / 5 \mathbb{Z}, y_{j} \in\langle 5\rangle$, and $a_{k}=\mathbb{Z} / 3 \mathbb{Z}$.

Table of Contents
ICASSP 2019

(1) Introduction

(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation
(5) Concluding Remarks

Algebraic Construction of 3D Lattices

Definition 3 (Lattice)

Given n linearly independent column vectors $\mathbf{g}_{1}, \cdots \mathbf{g}_{n}$ of dimension n, an $n D$ lattice Λ is defined as

$$
\begin{equation*}
\Lambda=\left\{\sum_{k=1}^{n} x_{k} \mathbf{g}_{k}: x_{k} \in \mathbb{Z}\right\} . \tag{8}
\end{equation*}
$$

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

The set $\left\{\mathbf{g}_{1}, \cdots \mathbf{g}_{n}\right\}$ is called the basis and the matrix that consists of this basis is the generator matrix of Λ which can be written as

$$
\begin{equation*}
\mathbf{G}=\left[\mathbf{g}_{1}|\cdots| \mathbf{g}_{n}\right] . \tag{9}
\end{equation*}
$$

CRT Arrays

Definition 4 (CRT array)

\mathbf{B}_{m} and \mathbf{B}_{n} are the matrices that represent two coprime cubic integers m and n respectively. A CRT array comprises two subarrays:

$$
\mathcal{S}_{1}=\left\{\mathbf{z}_{m}: \mathbf{z}_{m}=\mathbf{B}_{m} \mathbf{x}_{2}\right\}, \text { and } \mathcal{S}_{2}=\left\{\mathbf{z}_{n}: \mathbf{z}_{n}=\mathbf{B}_{n} \mathbf{x}_{1}\right\}
$$

The difference coarray:

$$
\begin{equation*}
\mathcal{S}=\left\{\mathbf{z}_{m}-\mathbf{z}_{n}: \mathbf{z}_{m} \in \mathcal{S}_{1}, \mathbf{z}_{n} \in \mathcal{S}_{2}\right\} . \tag{10}
\end{equation*}
$$

Generalized Chinese Remainder Theorem asserts the surged gain of degrees of freedom.

Proposed 3D Coprime Arrays

Algebraic Conjugates

$m \in \mathbb{Q}(\theta)$ can also be expressed as

$$
\begin{equation*}
m=u_{1}+u_{2} \theta+u_{3} \theta^{2} \tag{11}
\end{equation*}
$$

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA
Estimation
Concluding Remarks

The norm of m is defined as

$$
\begin{equation*}
\mathrm{N}(m)=\operatorname{det}\left(\mathbf{B}_{m}\right)=m m^{\prime} m^{\prime \prime} \tag{13}
\end{equation*}
$$

Coprimality of Cubic Integers and Their Matrices

Lemma 1: Two cubic integers are coprime if and only if their corresponding matrices are coprime.

A Brief Review of

Proposed 3D Coprime Arrays

Application in DOA Estimation
where $\hat{m}=m^{\prime} m^{\prime \prime} ; 3 \hat{u}_{1}=3 m_{2} m_{3} a b-3 m_{1}^{2}$, if $r \not \equiv \pm 1(\bmod 9)$, and $3 \hat{u}_{1}=3 m_{1}^{2}+\left(2 m_{1}-m_{2} a\right) m_{3} b+m_{3}^{2} b^{2}\left(1-a^{2}\right) / 3$ otherwise.

Theorem 1

In a pure cubic field, m and \hat{m} are coprime if and only if

$$
\begin{equation*}
G C D\left(N(m), 3 \hat{u}_{1}\right)=1, \tag{14}
\end{equation*}
$$

Examples of 3D CRT Arrays

(a) $\left\langle 5+2 \sqrt[3]{12}+\sqrt[3]{12^{2}}\right\rangle$ (red stars) and $\left\langle 1+2 \sqrt[3]{12}-\sqrt[3]{12^{2}}\right\rangle$ (blue dots) in $\mathbb{Z}[\sqrt[3]{12}]$.
(b) $\langle 3+\sqrt[3]{4}\rangle$ (red stars), $\langle-1+2 \sqrt[3]{2}+\sqrt[3]{4}\rangle$ (blue dots), and $\langle 1-2 \sqrt[3]{4}\rangle$ (yellow diamonds) in $\mathbb{Z}[\sqrt[3]{2}]$.

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Examples of 2D CRT Arrays

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation
(a) $\langle 2+i\rangle$ (red stars) and $\langle 2-i\rangle$ (blue dots) in $\mathbb{Z}[i]$.
(b) $\langle 3+2 i\rangle$ (red stars) and $\langle 3-2 i\rangle$ (blue dots) in $\mathbb{Z}[\omega]$.

Table of Contents

ICASSP

 2019
(1) Introduction

(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation
(5) Concluding Remarks

DOA Estimation without Mutual Coupling Effect

(a)

(b)

(c)

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

MUSIC spectra without considering mutual coupling effect. (a) 3D uniformly distributed array; (b) 2D CRT array: the quadratic field is $\mathbb{Q}(i) ; p=2+i ; q=2-i$. (c) 3D CRT array: the cubic field is $\mathbb{Q}(\sqrt[3]{2}) ; m=3+\sqrt[3]{4} ; n=-1+2 \sqrt[3]{2}+\sqrt[3]{4}$.

DOA Estimation with Mutual Coupling Effect

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

MUSIC spectra with the presence of mutual coupling effect. (a) 3D uniformly distributed array; (b) 2D CRT array; (c) 3D CRT array.

[^1]
Table of Contents

ICASSP

 2019
(1) Introduction

(2) A Brief Review of Cubic Integers and Chinese Remainder Theorem
(3) Proposed 3D Coprime Arrays
(4) Application in DOA Estimation

Introduction
A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays
(5) Concluding Remarks

Concluding Remarks

Introduction

- A new class of 3D coprime array is presented. They enjoy the sparse geometry and a surged gain of DOF.
- In the future, more compact 3D arrays will be developed based on denser lattices, and more applications of CRT arrays will be presented with comparisons to conventional 3D methods.

Thank you!

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

[^0]: ${ }^{1}$ Van Trees HL. Optimum array processing: Part IV of detection, estimation, and modulation theory. John Wiley Sons; 2004.

[^1]: ${ }^{6}$ B. Friedlander and AJ. Weiss, "Direction finding in the presence of mutual coupling," in IEEE Trans. on antennas and propagation, vol. 39, no. 3, pp. 273-84, Mar. 1991.

