ICASSP 2019

3D Coprime Arrays in Sparse Sensing

Conghui Li¹, Lu Gan², Cong Ling¹

¹Department of Electrical and Electronic Engineering Imperial College London

²College of Engineering, Design and Physical Sciences Brunel University

ICASSP 2019

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

ICASSP 2019

1 Introduction

- 2 A Brief Review of Cubic Integers and Chinese Remainder Theorem
- **3** Proposed 3D Coprime Arrays
- **4** Application in DOA Estimation
- **6** Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

ICASSP 2019

1 Introduction

2 A Brief Review of Cubic Integers and Chinese Remainder Theorem

- **3** Proposed 3D Coprime Arrays
- **4** Application in DOA Estimation
- **5** Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

DOA Estimation¹

ICASSP 2019

¹Van Trees HL. Optimum array processing: Part IV of detection, estimation, and modulation theory. John Wiley Sons; 2004.

Conghui ${\rm Li}^1$, Lu ${\rm Gan}^2$, Cong ${\rm Ling}^1$

Examples of 1D Coprime Arrays

Introduction

Concluding Remarks

(a) The coprime array². (b) The CACIS configuration³.

²P.P. Vaidyanathan and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573–586, Feb. 2011.
³S. Qin, Y. D. Zhang, and M.G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Process., vol. 63, pp. 1377–1390, Mar. 2015.

Conghui Li^1, Lu $\operatorname{Gan}^2,$ Cong Ling^1

Examples of 2D Coprime Arrays²

(a) Mn_1 and (b) Nn_2 where $M = [2, 2; -1, 5], N = [1, 2; -1, 4], n_1 = FPD(N)$, and $n_2 = FPD(M)$.

⁴P.P. Vaidyanathan and P. Pal, Theory of sparse coprime sensing in multiple dimensions. IEEE Trans. Signal Process., vol. 59, no. 8, pp. 3592–3608, Aug. 2011.

Conghui Li^1, Lu $\operatorname{Gan}^2,$ Cong Ling^1

Definition 1 (Coprime Matrices)

Coprime Matrices

Two integer matrices B_m and B_n are left coprime if and only if there exist integer matrices C and D such that

$$\mathbf{B}_m\mathbf{C}+\mathbf{B}_n\mathbf{D}=\mathbf{I}$$

Find a more general and systematic way of finding pairwise 3-by-3 coprime matrices.

Conghui Li¹, Lu Gan², Cong Ling¹

Introduction

(1)

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

7 / 24

ICASSP 2019

1 Introduction

2 A Brief Review of Cubic Integers and Chinese Remainder Theorem

- **3** Proposed 3D Coprime Arrays
- **4** Application in DOA Estimation
- **5** Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

Cubic Integers

ICASSP 2019

Definition 2 (Cubic Field)

A field extension of degree 3 over rational numbers \mathbb{Q} , i.e., it is a \mathbb{Q} -vector space of dimension three.

E.g. $\gamma = 5 + 2\sqrt[3]{12} + \sqrt[3]{12^2}$ is in the ring of integers of the cubic field $\mathbb{Q}(\sqrt[3]{12})$.

 $a + b\sqrt[3]{12} + c\sqrt[3]{12^2}$ is an cubic integer in $\mathbb{Q}(\sqrt[3]{12})$ $(a, b, c \in \mathbb{Z})$.

Other algebraic integers include quadratic integers, which can be used for planar arrays⁵.

⁵C. Li, L. Gan and C. Ling, "Coprime sensing via Chinese remaindering over quadratic fields—Part I: Array designs," in IEEE Trans. Signal Process., vol. 67, no. 11, pp. 2898-2910, June 2019.

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

• if $r \equiv \pm 1 \pmod{9}$

$$\left\{1,\,\theta,\,\frac{\theta^2+r\theta+b^2}{3b}\right\}.$$
(3)

Integral Basis of Cubic Field

A pure cubic field K is a field extension of \mathbb{Q} in the form of $\mathbb{Q}(\sqrt[3]{r})$ where r is a non-unit cubic-free integer. An integral basis of $\mathbb{Q}(\theta)$ $(\theta = \sqrt[3]{r}, r = ab^2)$ is

(

• if
$$r \not\equiv \pm 1 \pmod{9}$$

$$\left\{1,\,\theta,\,\frac{\theta^2}{b}\right\},\,\,\,\mathrm{or}$$

¹EEE Dept. Imperial College London, ²Brunel University

(2)

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Representation Matrix of a Cubic Integer

By stacking the coefficients corresponding to basis (2), the matrix representation of $m=m_1+m_2\theta+m_3\frac{\theta^2}{b}$ is

$${f B}_m = \left(egin{array}{cccc} m_1 & m_2 & m_3 \ m_3 a b & m_1 & m_2 b \ m_2 a b & m_3 a & m_1 \end{array}
ight),$$

E.g. The corresponding matrix of $\gamma = 5 + 2\sqrt[3]{12} + \sqrt[3]{12^2}$ is

$$\mathbf{B}_{\gamma} = \begin{pmatrix} 5 & 2 & 2\\ 12 & 5 & 4\\ 12 & 6 & 5 \end{pmatrix}.$$
 (5)

Introduction

(4)

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

11 / 24

If ${\mathcal I}$ and ${\mathcal J}$ are coprime, the Chinese Remaindering Theorem asserts that:

$$R/\mathcal{I}\mathcal{J}\simeq R/\mathcal{I}\times R/\mathcal{J}.$$
 (6)

For all $a_k \in R/\mathcal{I}$ and $b_j \in R/\mathcal{J}$, it can be verified that every pair (a_k, b_j) forms the solution

 $z \equiv x_k b_j + y_j a_k \pmod{\mathcal{I}\mathcal{J}}.$

where $x_k \in \mathcal{I}$ and $y_j \in \mathcal{J}$. Eg. $R = \mathbb{Z}$ and $\mathcal{I} = \langle 3 \rangle = 3\mathbb{Z} = \pm 3, \pm 6 \cdots$. Let $\mathcal{J} = \langle 5 \rangle$, thus $z \equiv x_k b_j + y_j a_k \pmod{15}$, where $x_k \in \langle 3 \rangle$, $b_j = \mathbb{Z}/5\mathbb{Z}$, $y_j \in \langle 5 \rangle$, and $a_k = \mathbb{Z}/3\mathbb{Z}$.

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

ICASSP

2019

Proposed 3D Coprime Arrays

Application in DOA Estimation

(7)

ICASSP 2019

1 Introduction

2 A Brief Review of Cubic Integers and Chinese Remainder Theorem

3 Proposed 3D Coprime Arrays

- **4** Application in DOA Estimation
- **5** Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

Algebraic Construction of 3D Lattices

Definition 3 (Lattice)

Given n linearly independent column vectors $\mathbf{g}_1, \cdots, \mathbf{g}_n$ of dimension n, an nD lattice Λ is defined as

$$\Lambda = \left\{ \sum_{k=1}^n x_k \mathbf{g}_k : x_k \in \mathbb{Z} \right\}.$$

The set $\{\mathbf{g}_1, \cdots, \mathbf{g}_n\}$ is called the basis and the matrix that consists of this basis is the generator matrix of Λ which can be written as

$$\mathbf{G} = [\mathbf{g}_1 | \cdots | \mathbf{g}_n]. \tag{9}$$

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

(8)

A Brief Review of Cubic Integers and Chinese Remainder Theorem

ICASSP

2019

```
Proposed 3D Coprime
Arrays
```

Application in DOA Estimation

CRT Arrays

ICASSP 2019

Definition 4 (CRT array)

 \mathbf{B}_m and \mathbf{B}_n are the matrices that represent two coprime cubic integers m and n respectively. A CRT array comprises two subarrays:

$$S_1 = \{ \mathbf{z}_m : \mathbf{z}_m = \mathbf{B}_m \mathbf{x}_2 \}, \text{ and } S_2 = \{ \mathbf{z}_n : \mathbf{z}_n = \mathbf{B}_n \mathbf{x}_1 \}.$$

The difference coarray:

$$S = \{ \mathbf{z}_m - \mathbf{z}_n : \mathbf{z}_m \in S_1, \mathbf{z}_n \in S_2 \}.$$
(10)

Generalized Chinese Remainder Theorem asserts the surged gain of degrees of freedom.

Conghui ${\rm Li}^1,~{\rm Lu}~{\rm Gan}^2,~{\rm Cong}~{\rm Ling}^1$

¹EEE Dept. Imperial College London, ²Brunel University

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Algebraic Conjugates

$m \in \mathbb{Q}(heta)$ can also be expressed as

$$m=u_1+u_2\theta+u_3\theta^2.$$

Let $\omega = e^{j2\pi/3}$. The three embeddings that map $m \in \mathcal{O}_K$ into $\mathbb C$ are:

$$egin{aligned} m &
ightarrow m = u_1 + u_2 heta + u_3 heta^2, \ m &
ightarrow m' = u_1 + u_2 \omega heta + u_3 \omega^2 heta^2, \ m &
ightarrow m'' = u_1 + u_2 \omega^2 heta + u_3 \omega heta^2. \end{aligned}$$

The norm of m is defined as

$$N(m) = \det(\mathbf{B}_m) = mm'm''. \tag{13}$$

(11)

(12)

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

Coprimality of Cubic Integers and Their Matrices

Lemma 1: Two cubic integers are coprime if and only if their corresponding matrices are coprime.

Theorem 1

In a pure cubic field, m and \hat{m} are coprime if and only if

$$GCD(N(m), 3\hat{u}_1) = 1,$$
 (14)

where $\hat{m} = m'm''$; $3\hat{u}_1 = 3m_2m_3ab - 3m_1^2$, if $r \not\equiv \pm 1 \pmod{9}$, and $3\hat{u}_1 = 3m_1^2 + (2m_1 - m_2a)m_3b + m_3^2b^2(1 - a^2)/3$ otherwise.

Conghui ${\rm Li}^1$, Lu ${\rm Gan}^2$, Cong ${\rm Ling}^1$

¹EEE Dept. Imperial College London, ²Brunel University

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

ICASSP

2019

Proposed 3D Coprime Arrays

Application in DOA Estimation

Examples of 3D CRT Arrays

ICASSP 2019

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

(a)

(a) $\langle 5 + 2\sqrt[3]{12} + \sqrt[3]{12^2} \rangle$ (red stars) and $\langle 1 + 2\sqrt[3]{12} - \sqrt[3]{12^2} \rangle$ (blue dots) in $\mathbb{Z}[\sqrt[3]{12}]$. (b) $\langle 3 + \sqrt[3]{4} \rangle$ (red stars), $\langle -1 + 2\sqrt[3]{2} + \sqrt[3]{4} \rangle$ (blue dots), and $\langle 1 - 2\sqrt[3]{4} \rangle$ (yellow diamonds) in $\mathbb{Z}[\sqrt[3]{2}]$.

Conghui Li^1, Lu $\operatorname{Gan}^2,$ Cong Ling^1

¹EEE Dept. Imperial College London, ²Brunel University

(b)

Examples of 2D CRT Arrays

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

(a) $\langle 2+i \rangle$ (red stars) and $\langle 2-i \rangle$ (blue dots) in $\mathbb{Z}[i]$. (b) $\langle 3+2i \rangle$ (red stars) and $\langle 3-2i \rangle$ (blue dots) in $\mathbb{Z}[\omega]$.

Conghui Li¹, Lu Gan², Cong Ling¹

ICASSP 2019

1 Introduction

2 A Brief Review of Cubic Integers and Chinese Remainder Theorem

3 Proposed 3D Coprime Arrays

4 Application in DOA Estimation

5 Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

DOA Estimation without Mutual Coupling Effect

MUSIC spectra without considering mutual coupling effect. (a) 3D uniformly distributed array; (b) 2D CRT array: the quadratic field is $\mathbb{Q}(i)$; p = 2 + i; q = 2 - i. (c) 3D CRT array: the cubic field is $\mathbb{Q}(\sqrt[3]{2})$; $m = 3 + \sqrt[3]{4}$; $n = -1 + 2\sqrt[3]{2} + \sqrt[3]{4}$.

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

ICASSP

2019

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui ${\rm Li}^1,$ Lu ${\rm Gan}^2,$ Cong ${\rm Ling}^1$

DOA Estimation with Mutual Coupling Effect

MUSIC spectra with the presence of mutual coupling effect. (a) 3D uniformly distributed array; (b) 2D CRT array; (c) 3D CRT array.

⁶B. Friedlander and AJ. Weiss, "Direction finding in the presence of mutual coupling," in IEEE Trans. on antennas and propagation, vol. 39, no. 3, pp. 273-84, Mar. 1991.

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

ICASSP

2019

A Brief Review of

Application in DOA

Concluding Remarks

Estimation

ICASSP 2019

1 Introduction

- 2 A Brief Review of Cubic Integers and Chinese Remainder Theorem
- **3** Proposed 3D Coprime Arrays
- **4** Application in DOA Estimation

5 Concluding Remarks

Introduction

A Brief Review of Cubic Integers and Chinese Remainder Theorem

Proposed 3D Coprime Arrays

Application in DOA Estimation

Concluding Remarks

Conghui Li¹, Lu Gan², Cong Ling¹

¹EEE Dept. Imperial College London, ²Brunel University

23 / 24

Concluding Remarks

- A new class of 3D coprime array is presented. They enjoy the sparse geometry and a surged gain of DOF.
- In the future, more compact 3D arrays will be developed based on denser lattices, and more applications of CRT arrays will be presented with comparisons to conventional 3D methods.

Thank you!

International Com-

A Brief Review of Cubic Integers and Chinese Remainder Theorem

ICASSP

2019

Proposed 3D Coprime Arrays

Application in DOA Estimation