
Deep Graph Regularized Learning for
Binary Classification

Minxiang Ye, Vladimir Stankovic, Lina Stankovic, Gene Cheung*

Electronic and Electrical Engineering Department, University of Strathclyde,
Glasgow, UK

*Electrical Engineering and Computer Science Department, York University,
Toronto, CA

IEEE ICASSP-2019, Brighton, UK, May 2019

https://sensible.eee.strath.ac.uk

• Collecting and labeling data is often
impractical, expensive or time-consuming

• Deep neural networks tend to overfit, given
limited labeled data for training

Motivation

 Can we mitigate the overfit effects of insufficient data for the classification task?

Regularization

Data
Augmentation

Network Sampling
& Weight Sharing

Regularization
Term

(independent of
targets)

Optimization

Robust Error
Function

Graph Signal Processing (GSP)

CNN-based Weighted Loss Function

+

Problem Statement

3

Classifier learning problem: Given a training set {x, y}1,…,M learn a
function ℱ(x) that maps input sample x to a label y

ࢄ = ,ଵݔ} ,ଶݔ … , {ேݔ
ࢅ = ,ଵݕ ,ଶݕ … , ,ெݕ … , ேݕ , ∈ {−1, 1}
̇ࢅ = ,ଵݕ ,ଶݕ … , ெݕ , ܯ ≪ ܰ

Observations/samples
Class labels

Known labels (training set)

The main idea: Step 1

1. Use Convolutional Neural Network (CNN) to learn deep
features

4

0 1

1
0

0
1

0

1

1

positive

negative

Example: Use CNN to extract features that promote small distance between Cat samples,
and large distance between Cat and Dog samples

The main idea: Step 2

1. Use Convolutional Neural Network (CNN) to learn features
2. Use the learned “deep” features to learn the graph structure

5

0 1

1
0

0
1

0

1

1

wi,j

L

The main idea: Step 3

1. Use Convolutional Neural Network (CNN) to learn features
2. Use the learned “deep” features to learn the graph
3. The graph is used to perform graph Laplacian

regularization

6

0 1

1
0

0
1

0

0

1

Input Graph (After Graph Construction)

Graph Laplacian Regularization
(GLR)

0 1

1
0

0
1

1

0

1

Smoothed Graph

Main steps

1. Use Convolutional Neural Network (CNN) to learn features
2. Use the learned “deep” features to learn the graph
3. The graph is used to perform graph Laplacian regularization
4. Update the CNN to improve feature learning via a weighted

loss function that reflects the quality of learned underlying
graph, promoting connections between the nodes with the
same labels, and penalizing the connection of nodes with
the opposite labels.

7

ݏݏܮ = ߙ − ܨ ݔ − ܨ ݔ ଶ
ଶ ȉ + ,ߨ ܨ ݔ − ܨ ݔ ଶ

ଶ
ȉ ,ߨ

௨

ெ

,,

First step: Building a Graph

8

Construct a graph ू = (ठ, ۳, (܅
Graph signal (class labels): Y with yi corresponding to a Vertex i

How do we construct the graph (E, W) that truly reflects
the signal statistics?

• Nodes with the same labels connected, and
those with opposite labels disconnected

• Outliers penalized
• Sparse and connected graph
=> let’s use a k-NN graph

high-weight edges

low-weight edges

0 1

10

0 1

10No Self Loop

Only Connect Nearest K nodes

Symmetric

Edge Loss Function

• The loss function promotes small/large Euclidean distance between the nodes
with the same/opposite labels, while keeping minimum a margin

ࡱݏݏܮ =
ࡱߙ − ℱ (ݔ) − ℱ(ݔ) ଶ

ଶ + ℱ(ݔ) − ℱ(ݔ)
ଶ
ଶ

ோ௨
ݕ ≠ ,ݕ ݕ = ݕ

ெ

,,
Deep features at Vertex xa

distance between nodes
in the same class

distance between nodes
in the opposite classmargin

(1)

9Controls sparsity to achieve a KNN-graph

(2)݁, = 1, , in -neighbourhood of Node iݔ ݂݅
݁, = 0, otherwise

• Idea: Learn the model (i.e., the underlying graph) based on CNN ‘deep features’ as
input, and then use a LOSS function that reflects how good the model is.

• Optimise the CNN weights (C) using the new loss and update the features
• Underlying graph defined by edges E (- KNN graph degree) & weights W
• How to define the loss function?

Weight Loss Function

• Graph Laplacian regularization step that attempts to find the smoothest graph signal,
̇ࢅ for a given graph, that is close to the observed set of labels ,̈ࢅ

• LossW fed back to the CNN for regularisation
• By calculating iteratively Eq. (3), (5), (4), batch-by-batch, and feeding back the loss to

CNN to update ℱ, the loss of graph edge weight is minimised based on the edges
with high attention value, while learning the best regularized deep metric function

Amount of attention given to nodes
with the same and opposite labels

graph weights ,ݓ(3) = −)ݔ݁ ℱ (ݔ) − ℱ(ݔ)
ଶ
ଶ/(2ߪଶ))

(4)

̈ࢅ = arg ࢁ݊݅݉ ࢁ − ̇ࢅ + ࢀࢁࡸࢁߤ

ݕߜ = ቊ1, ̈݅ݕ ݂݅ − ̇݅ݕ > ߳
0, ̈݅ݕ ݂݅ − ̇݅ݕ ≤ ߳

(5)

ࢃݏݏܮ =
ࢃߙ − ℱ(ݔ) − ℱ(ݔ) ଶ

ଶߨ, + ℱ(ݔ) − ℱ(ݔ)
ଶ
ଶ

,ߨ
ା

ࢰ = ,ߨ = ݕߜ ∗ ݕߜ

ெ

,,

10

• Iterate between Eq.(1), (2) and backpropagation via ADAM optimiser
=> Optimised degree and edges and E + CNN weights C

• We still need to set the weights for our KNN graph

Graph Regularisation
0 1

1
0

0
1

0

0

1

Input Graph (After Graph Construction)

Graph Laplacian Regularisation
(GLR)

①

0 1

1
0

0
1

1

0

1

Smoothed Graph

?: discard

ࢅ0,0,0,0,0 ,1-,1-,1-,1-,1,1,1,1,1 = { } 0.8,0.9,0.7,0.9, ࢅ?,?,?,?,? ,0.8-,0.2-,0.9-,0.8-,0.3- = { }

For each edge, compute weighting factor ߨ:

ଵݕߜ=ଵ,ହߨ ∗ ହ=1*0=0ݕߜ

>ଵ=|1-0.8|=0.2ݕߜ ߳ → ଵ=1ݕߜ -ହ=|1ݕߜ -0.3|=1.3> ߳ → ହ=0ݕߜ

High Confident Node 1 Low Confident Node 5

Edge Weight Factor for Node 1&5:
11

߳ = 0.6

Classification for insufficient data

(1)

(2)

(3)

(4)

(6)

(5)

ࡱݏݏܮ =
ࡱߙ − (ݔ)ܨ − (ݔ)ܨ ଶ

ଶ + (ݔ)ܨ − (ݔ)ܨ
ଶ
ଶ

ା
ݕ = ݕ , ݕ ≠ ݕ

ெ

,,

,ݓ = −)ݔ݁ ℱ (ݔ) − ℱ(ݔ)
ଶ
ଶ

((ଶߪ2)/

̈ࢅ = arg ࢁ݊݅݉ ࢁ − ̇ࢅ + ࢀࢁࡸࢁߤ

ࢃݏݏܮ =
ࢃߙ − ℱ(ݔ) − ℱ(ݔ) ଶ

ଶߨ, + ℱ(ݔ) − ℱ(ݔ)
ଶ
ଶߨ, ା

ࢰ = ,ߨ = ݕߜ ∗ ݕߜ

ெ

,,

12
ݕߜ = ቊ1, ̈݅ݕ ݂݅ − ̇݅ݕ > ߳

0, ̈݅ݕ ݂݅ − ̇݅ݕ ≤ ߳

݁, = 1, ,-neighbourhood of Node i ݊݅ ݅ݔ ݂݅
݁, = 0, otherwise

• Datasets from Knowledge Extraction based on Evolutionary Learning
dataset (KEEL) (http://www.keel.es)
– Phoneme: classification of nasal (class 0) and oral sounds (class 1),

with 5404 instances (frames) described by 5 phonemes of digitized
speech (challenging)

– Spambase: determining whether an email is spam (class 0) or not
(class 1), with 4597 email messages summarized by 57 particular
words or characters

Evaluation: Datasets

13

• Support Vector Machines with radial basis function kernel (SVM-RBF)
• GSP-based classifier
• A classic CNN-based classifier
• Dynamic-graph CNN (DynGraph-CNN)1

• KNN-based deep metric classifier (DML-KNN)2

1 Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph CNN for learning on point
clouds,” ICLR 2017, vol. abs/1801.07829.
2 E. Hoffer, N. Ailon, “Deep metric learning using triplet network,” in Intl. Workshop on Similarity-Based Pattern
Recognition. Springer, 2015.

Results
Training [%] 10 15 20 25 30

SVM-RBF 20.81 20.32 19.78 19.45 19.05

GSP 23.09 22.92 22.72 22.34 22.17

CNN 20.69 20.22 19.51 19.12 18.91

DynGraph-CNN 22.12 20.20 19.39 19.21 18.40

DML-KNN 20.37 20.37 19.31 19.18 18.12

Proposed 19.86 19.37 18.93 18.78 17.89

Classification error rate [%] for Phoneme Dataset

Training [%] 10 15 20 25 30

SVM-RBF 10.04 9.30 9.00 8.61 8.41

GSP 20.22 20.10 19.68 19.13 18.72

CNN 9.72 9.18 8.75 8.65 8.26

DynGraph-CNN 11.84 10.71 9.52 9.38 9.09

DML-KNN 9.20 8.26 7.97 7.73 7.44

Proposed 9.08 8.18 7.64 7.52 7.38

Classification error rate [%] for Spambase Dataset

• Numerical stability analysis for graph construction
• Tackle noisy training labels
• Evaluation on more types of data

In Preparation

• Integrating graph Laplacian regularization into a deep
neural network to combat problem of insufficient training
data

• Linking target independent regularization term and robust
error function via semi-supervised graph learning

• Proven regularization effects compared with state-of-the-art
approaches

Conclusion

