

Deep Graph Regularized Learning for Binary Classification

Minxiang Ye, Vladimir Stankovic, Lina Stankovic, Gene Cheung*

Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow, UK *Electrical Engineering and Computer Science Department, York University, Toronto, CA

IEEE ICASSP-2019, Brighton, UK, May 2019

https://sensible.eee.strath.ac.uk

Motivation

- Collecting and labeling data is often impractical, expensive or time-consuming
- Deep neural networks tend to overfit, given limited labeled data for training
- Can we mitigate the overfit effects of insufficient data for the classification task?

X = { $x_1, x_2, ..., x_N$ }Observations/samplesY = { $y_1, y_2, ..., y_M, ..., y_N$ }Class labelsY = { $y_1, y_2, ..., y_M$ }M < N</th>

Classifier learning problem: Given a training set $\{x, y\}_{1,...,M}$ learn a function $\mathcal{F}(x)$ that maps input sample x to a label y

The main idea: Step 1

1. Use Convolutional Neural Network (CNN) to learn deep features

Example: Use CNN to extract features that promote small distance between Cat samples, and large distance between Cat and Dog samples

The main idea: Step 2

- 1. Use Convolutional Neural Network (CNN) to learn features
- 2. Use the learned "deep" features to learn the graph structure

The main idea: Step 3

- 1. Use Convolutional Neural Network (CNN) to learn features
- 2. Use the learned "deep" features to learn the graph
- 3. The graph is used to perform **graph Laplacian regularization**

Input Graph (After Graph Construction)

Smoothed Graph

Main steps

- 1. Use Convolutional Neural Network (CNN) to learn features
- 2. Use the learned "deep" features to learn the graph
- 3. The graph is used to perform graph Laplacian regularization
- 4. Update the CNN to improve feature learning via a weighted loss function that reflects the quality of learned underlying graph, **promoting** connections between the nodes with the same labels, and **penalizing** the connection of nodes with the opposite labels.

$$Loss = \sum_{a,p,n}^{M} \left[\alpha - \|F(x_a) - F(x_n)\|_2^2 \cdot \pi_{a,n} + \|F(x_a) - F(x_p)\|_2^2 \cdot \pi_{a,p} \right]_{relu}$$

First step: Building a Graph

Construct a graph $\mathfrak{E} = (\mathcal{V}, \mathbf{E}, \mathbf{W})$ Graph signal (**class labels**): **Y** with y_i corresponding to a Vertex *i*

How do we construct the graph (E, W) that truly reflects the signal statistics?

- Nodes with the same labels connected, and those with opposite labels disconnected
- Outliers penalized
- Sparse and connected graph
- => let's use a k-NN graph

high-weight edges

Edge Loss Function

9

- Idea: Learn the model (i.e., the underlying graph) based on CNN 'deep features' as input, and then use a LOSS function that reflects how good the model is.
- Optimise the CNN weights (C) using the new loss and update the features
- Underlying graph defined by edges E (γ KNN graph degree) & weights W
- How to define the loss function?

• The loss function promotes small/large Euclidean distance between the nodes with the same/opposite labels, while keeping minimum a margin

$$e_{i,j} = 1$$
, if x_i in γ -neighbourhood of Node i , (2)
 $e_{i,j} = 0$, otherwise
Controls sparsity to achieve a KNN-graph

Weight Loss Function

- Iterate between Eq.(1), (2) and backpropagation via ADAM optimiser
 - => Optimised degree and edges γ and **E** + CNN weights **C**
- We still need to set the weights for our KNN graph

graph weights
$$w_{i,j} = exp(-\|\mathcal{F}_r(x_i) - \mathcal{F}_r(x_j)\|_2^2/(2\sigma^2))$$
 (3)
 $Loss_W = \sum_{a,p,n}^{M} \begin{bmatrix} \alpha_W - \|\mathcal{F}_r(x_a) - \mathcal{F}_r(x_n)\|_2^2 \pi_{a,n} + \|\mathcal{F}_r(x_a) - \mathcal{F}_r(x_p)\|_2^2 \pi_{a,p} \end{bmatrix}_+ \Pi = \{\pi_{i,j}\} = \{\delta y_i * \delta y_j\}$ (4)

Amount of *attention* given to nodes with the same and opposite labels

$$\delta y_i = \begin{cases} 1, & if \ |\ddot{y}_i - \dot{y}_i| > \epsilon \\ 0, & if \ |\ddot{y}_i - \dot{y}_i| \le \epsilon \end{cases}$$

$$\ddot{\mathbf{Y}} = \arg \min_{\mathbf{U}} \{ (\mathbf{U} - \dot{\mathbf{Y}}) + \mu \mathbf{U} \mathbf{L} \mathbf{U}^{T} \}$$

(5)

- Graph Laplacian regularization step that attempts to find the smoothest graph signal,
 Ÿ, for a given graph, that is close to the observed set of labels *Y*
- $Loss_w$ fed back to the CNN for regularisation
- By calculating iteratively Eq. (3), (5), (4), batch-by-batch, and feeding back the loss to CNN to update \mathcal{F}_r , the loss of graph edge weight is minimised based on the edges with high attention value, while learning the best regularized deep metric function $_{10}$

Edge Weight Factor for Node 1&5: $\pi_{1,5}=\delta y_1 * \delta y_5=1*0=0$

Classification for insufficient data

 $e_{i,j} = 1$, if xi in γ -neighbourhood of Node i, $e_{i,j} = 0$, otherwise (2)

$$w_{i,j} = exp(-\|\mathcal{F}_r(x_i) - \mathcal{F}_r(x_j)\|_2^2 / (2\sigma^2))$$
(3)

$$Loss_{W} = \sum_{a,p,n}^{M} \begin{bmatrix} \alpha_{W} - \|\mathcal{F}_{r}(x_{a}) - \mathcal{F}_{r}(x_{n})\|_{2}^{2}\pi_{a,n} + \|\mathcal{F}_{r}(x_{a}) - \mathcal{F}_{r}(x_{p})\|_{2}^{2}\pi_{a,p} \end{bmatrix}_{+}$$
$$\boldsymbol{\Pi} = \{\pi_{i,j}\} = \{\delta y_{i} * \delta y_{j}\}$$

University of Strathclyde

$$\ddot{\mathbf{Y}} = \arg \min_{\mathbf{U}} \{ (\mathbf{U} - \dot{\mathbf{Y}}) + \mu \mathbf{U} \mathbf{L} \mathbf{U}^T \}$$
(5)

$$\delta y_i = \begin{cases} 1, & if \ |\ddot{y}_i - \dot{y}_i| > \epsilon \\ 0, & if \ |\ddot{y}_i - \dot{y}_i| \le \epsilon \end{cases}$$
(6)

Evaluation: Datasets

- Datasets from Knowledge Extraction based on Evolutionary Learning dataset (KEEL) (<u>http://www.keel.es</u>)
 KEEL-dataset Data set repository
 - Phoneme: classification of nasal (class 0) and oral sounds (class 1), with 5404 instances (frames) described by 5 phonemes of digitized speech (challenging)
 - Spambase: determining whether an email is spam (class 0) or not (class 1), with 4597 email messages summarized by 57 particular words or characters
 - Support Vector Machines with radial basis function kernel (SVM-RBF)
 - GSP-based classifier
 - A classic CNN-based classifier
 - Dynamic-graph CNN (DynGraph-CNN)¹
 - KNN-based deep metric classifier (DML-KNN)²

¹ Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic graph CNN for learning on point clouds," *ICLR 2017*, vol. abs/1801.07829.

² E. Hoffer, N. Ailon, "Deep metric learning using triplet network," in *Intl. Workshop on Similarity-Based Pattern* 13 *Recognition*. Springer, 2015.

Results

Classification error rate [%] for Phoneme Dataset

					Stra
Training [%]	10	15	20	25	30 Engin le
SVM-RBF	20.81	20.32	19.78	19.45	19.05
GSP	23.09	22.92	22.72	22.34	22.17
CNN	20.69	20.22	19.51	19.12	18.91
DynGraph-CNN	22.12	20.20	19.39	19.21	18.40
DML-KNN	20.37	20.37	19.31	19.18	18.12
Proposed	19.86	19.37	18.93	18.78	17.89

Classification error rate [%] for *Spambase Dataset*

Training [%]	10	15	20	25	30
SVM-RBF	10.04	9.30	9.00	8.61	8.41
GSP	20.22	20.10	19.68	19.13	18.72
CNN	9.72	9.18	8.75	8.65	8.26
DynGraph-CNN	11.84	10.71	9.52	9.38	9.09
DML-KNN	9.20	8.26	7.97	7.73	7.44
Proposed	9.08	8.18	7.64	7.52	7.38

Conclusion

- Integrating graph Laplacian regularization into a deep neural network to combat problem of insufficient training data
- Linking target independent regularization term and robust error function via semi-supervised graph learning
- Proven regularization effects compared with state-of-the-art approaches

In Preparation

- Numerical stability analysis for graph construction
- Tackle noisy training labels
- Evaluation on more types of data